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Abstract

Creation operators act on symmetric functions to build Schur functions, Hall–Littlewood
polynomials, and related symmetric functions one row at a time. Haglund, Morse, Zabrocki,
and others have studied more general symmetric functions Hα, Cα, and Bα obtained by
applying any sequence of creation operators to 1. We develop new combinatorial models for
the Schur expansions of these and related symmetric functions using objects called abacus-
histories. These formulas arise by chaining together smaller abacus-histories that encode the
effect of an individual creation operator on a given Schur function. We give a similar treat-
ment for operators such as multiplication by hm, h⊥

m
, ω, etc., which serve as building blocks

to construct the creation operators. We use involutions on abacus-histories to give bijec-
tive proofs of properties of the Bernstein creation operator and Hall–Littlewood polynomials
indexed by three-row partitions.

Keywords: Hall–Littlewood polynomials; Bernstein operators; Jing operators; HMZ opera-
tors; creation operators; Schur functions; semistandard tableaux; abaci; abacus histories; lattice
paths.

1 Introduction

Creation operators are an important technical tool in the study of the Schur polynomials sµ,
the Hall–Littlewood polynomials Hµ, and related symmetric functions. Let Λ denote the ring
of symmetric functions with coefficients in the field F = Q(q), where q is a formal variable. For
each integer b, the Bernstein creation operator Sb is an F -linear operator on Λ. These operators
“create” the Schur symmetric functions, one row at a time, in the following sense. Given any
integer partition µ = (µ1 ≥ µ2 ≥ · · · ≥ µL), we have

sµ = Sµ1
◦Sµ2

◦ · · · ◦ SµL
(1). (1)

Similarly, the Jing creation operators [6] are F -linear operators Hb on Λ that create the Hall–
Littlewood symmetric functions Hµ [15, Chpt. III]. Specifically, for any integer partition µ,

Hµ = Hµ1
◦Hµ2

◦ · · · ◦HµL
(1). (2)

∗This work was supported by a grant from the Simons Foundation/SFARI (#633564, N.A.L.).
†This work was supported by a grant from the Simons Foundation/SFARI (#429570, G.S.W.).
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Garsia, Haglund, Morse, Xin, and Zabrocki [3, 4] have studied variations of the Jing creation
operators, denoted Cb and Bb, that play a crucial role in the study of q, t-Catalan numbers,
diagonal harmonics modules, and the Bergeron–Garsia nabla operator. Replacing each Hµi

in (2) by Cµi
or Bµi

produces symmetric functions that are closely related to Hall–Littlewood
polynomials. More generally, we can consider operators indexed by arbitrary compositions rather
than restricting to partitions. For any finite sequence of integers α = (α1, α2, . . . , αL), we can
define symmetric functions

Sα = Sα1
◦Sα2

◦ · · · ◦ SαL
(1); (3)

Hα = Hα1
◦Hα2

◦ · · · ◦HαL
(1); (4)

Cα = Cα1
◦Cα2

◦ · · · ◦ CαL
(1); (5)

Bα = BαL
◦BαL−1

◦ · · · ◦ Bα1
(1). (6)

On one hand, as we explain in Section 2.2, each Sα is either 0 or ±sµ for some partition µ, where
µ can be found from α by repeated use of the commutation rule

Sm ◦Sn = − Sn−1 ◦Sm+1 (m,n ∈ Z). (7)

On the other hand, the Hα, Cα, and Bα are more complicated symmetric functions that may
be regarded as generalized Hall–Littlewood polynomials. For general α, the Schur coefficients of
these symmetric functions are polynomials in q (possibly multiplied by a fixed negative power
of q) containing a mixture of positive and negative coefficients.

The primary goal of this paper is to develop explicit combinatorial formulas for the Schur
expansions of Hα, Cα, and Bα based on signed, weighted collections of non-intersecting lattice
paths called abacus-histories. Along the way, we develop concrete formulas giving the Schur
expansion of the image of any Schur function under a single operator Sb, Hb, Cb, Bb, or any finite
composition of such operators. We also give a similar treatment for some simpler operators such
as ω, multiplication by hb, h

⊥
b , etc., which serve as building blocks for constructing the more

elaborate creation operators.
Some related work appears in a paper by Jeff Remmel and Meesue Yoo [17]. Our approach

features two key innovations leading to new and explicit combinatorial formulas. First, we use
abacus diagrams rather than Ferrers diagrams as a means of visualizing the indexing partition µ
for a Schur function sµ. This lets us record a particular Schur coefficient using a one-dimensional
picture instead of a two-dimensional picture. Second, we utilize the second dimension of our
picture to show the evolution of the abacus over time as various operators are applied to our
initial Schur function. We thereby generate collections of non-intersecting lattice paths (abacus-
histories) that represent the individual terms in the Schur expansion of the desired symmetric
function. In some instances, we can define involutions on abacus-histories that cancel out neg-
ative objects, thereby proving Schur-positivity or related identities.

The rest of this paper is organized as follows. Section 2 reviews the needed background
on symmetric functions and covers definitions and algebraic properties of various creation op-
erators. Section 3 develops combinatorial versions of the creation operators, showing how to
implement each operator by acting on an abacus diagram for one or two time steps. We use
this combinatorics to reprove (from first principles) some creation operator identities such as (1)
and (7). Section 4 iterates our constructions to develop abacus-history formulas for the Schur
expansions of Hα, Cα, Bα, and related symmetric functions. As a sample application of this
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technology, Section 4.2 gives an elementary combinatorial proof of the Schur-positivity of three-
row Hall–Littlewood polynomials, leading to a simple formula for the Schur coefficients of these
objects. We conclude by presenting some open problems and directions for further work.

2 Algebraic Development of Creation Operators

We assume readers are familiar with basic background material on symmetric functions, in-
cluding definitions and facts concerning integer partitions, the elementary symmetric functions
ek, the complete homogeneous symmetric functions hk, the Schur symmetric functions sµ, the
involution ω, and the Hall scalar product 〈·, ·〉 on Λ. In particular, the Schur functions sµ (with
µ ranging over all integer partitions) form an orthonormal basis of Λ relative to the Hall scalar
product, and ω is an involution, ring isomorphism, and isometry on Λ sending each sµ to sµ′ .
(See standard texts on symmetric functions such as [13, 15, 18] for more information.)

Our initial definitions of the creation operators (following [3, 4]) utilize plethystic notation,
but readers need not have any detailed prior knowledge of plethystic notation to understand this
paper. In fact, one of our goals here is to offer an alternative, highly concrete and combinatorial
treatment of creation operators to complement the plethystic computations that appear in much
of the existing literature on this topic. Thus, each plethystic definition is immediately followed
by an equivalent algebraic definition not using plethystic notation. Familiarity with plethystic
notation is required in only one (optional) section that proves the equivalence of the two defini-
tions. The paper [14] has a detailed exposition of plethystic notation containing all facts needed
here. Later in the paper, we develop completely combinatorial definitions of creation operators
(and related operators) in terms of abacus-histories.

2.1 Multiplication Operators and their Adjoints

Recall that F is the field Q(q), and Λ is the F -algebra of symmetric functions with coefficients in
F . For any symmetric function f ∈ Λ, define the linear operatorMf : Λ → Λ to bemultiplication

by f :
Mf (P ) = fP (P ∈ Λ). (8)

We frequently take f to be hc (the complete homogeneous symmetric function) or ec (the ele-
mentary symmetric function).

The Pieri Rules [13, Sec. 9.11] show howMhc
andMec act on the Schur basis. First, let HS(c)

be the set of all skew shapes λ/µ consisting of a horizontal strip of c cells. For all partitions µ,

Mhc
(sµ) = hcsµ =

∑

λ: λ/µ∈HS(c)

sλ. (9)

Pictorially, we apply Mhc
to sµ by adding a horizontal strip of size c to the Ferrers diagram of

µ in all possible ways and summing the Schur functions indexed by the new diagrams.
Second, let VS(c) be the set of all skew shapes λ/µ consisting of a vertical strip of c cells.

For all partitions µ,

Mec(sµ) = ecsµ =
∑

λ: λ/µ∈VS(c)

sλ. (10)

This time, we compute Mec(sµ) by adding a vertical strip of size c to the diagram of µ in all
possible ways and summing the resulting Schur functions.
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For any linear operator G on Λ, let G⊥ denote the operator on Λ that is adjoint to G relative
to the Hall scalar product. So, G⊥ is the unique linear map on Λ satisfying

〈G⊥(P ), Q〉 = 〈P,G(Q)〉 for all P,Q ∈ Λ. (11)

When G is a multiplication operator Mf , we define f⊥ = (Mf )
⊥ for brevity. Thus,

〈f⊥(P ), Q〉 = 〈P, fQ〉 for all f, P,Q ∈ Λ. (12)

We mostly use h⊥c and e⊥c acting on the Schur basis. Since the Schur basis is orthonormal relative
to the Hall scalar product, it follows from (12) and (9) that

h⊥c (sµ) =
∑

ν: µ/ν∈HS(c)

sν . (13)

In other words, h⊥c acts on sµ by removing a horizontal c-strip from the Ferrers diagram of µ in
all possible ways and summing the resulting Schur functions. Similarly,

e⊥c (sµ) =
∑

ν: µ/ν∈VS(c)

sν . (14)

So e⊥c acts on sµ by removing a vertical c-strip from the Ferrers diagram of µ in all possible
ways and summing the resulting Schur functions.

As a convention, when c is a negative integer, we define the operators Mhc
, Mec , h

⊥
c , and e⊥c

to be the zero operator.

2.2 Bernstein’s Creation Operators Sm

As in [4, pg. 834], we give a plethystic formula defining the Bernstein creation operators Sm.
More information on these operators (which can be combined into a single operator denoted
S or Γ(z)) appears in earlier works by Thibon et al. [19, 20, 21]. For any integer m and any
symmetric function P , set

Sm(P ) =

{

P

[

X −
1

z

] ∞
∑

k=0

hkz
k

}∣

∣

∣

∣

∣

zm

. (15)

To explain this formula briefly: we first compute P [X − (1/z)] by expressing P (uniquely) as a
polynomial in the power-sum symmetric functions pn with coefficients in F , then replacing each
pn by pn − (1/zn). Next we multiply by the formal power series

∑

k≥0 hkz
k to obtain a formal

Laurent series in z with coefficients in Λ. Taking the coefficient of zm in this series gives us
Sm(P ).

Here is an equivalent algebraic definition of Sm not using plethystic notation:

Sm =

∞
∑

c=0

(−1)cMhm+c
◦ e⊥c . (16)

(This definition appears in [15, Ex. 29, pp. 95–97], but Macdonald uses the notation Bm for
our Sm. We use the notation Sm from [4] to avoid confusion with the operator Bm below.) We
prove the equivalence of definitions (15) and (16) in Section 5.
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Sm(sµ) = +s(m,88844221) for all m ≥ 8, S4(sµ) = −s(777744221), S3(sµ) = −s(777644221),

S2(sµ) = −s(777544221), S1(sµ) = −s(777444221), S−2(sµ) = −s(777333221),

S−3(sµ) = −s(777332221), S−6(sµ) = −s(777331111), S−8(sµ) = +s(777331100),

Sm(sµ) = 0 for all other m ∈ Z.

Table 1: Values of Sm(s(88844221)) for all m ∈ Z.

By combining the Pieri formulas and dual Pieri formulas discussed above, we can give a
combinatorial prescription for computing Sm(sµ) based on Ferrers diagrams. Starting with the
diagram of µ, do the following steps in all possible ways. First choose a nonnegative integer c.
Then remove a vertical strip of c cells from µ to get some shape ν. Then add a horizontal strip
of m+ c cells to ν to get a new shape λ. Record (−1)csλ as one of the terms in Sm(sµ).

Now, there is a much simpler way of computing Sm(sµ) based on formulas (1), (3), and (7).
Given a partition µ = (µ1 ≥ · · · ≥ µL) and integer m, start with the list (m,µ1, . . . , µL).
If m ≥ µ1, then output the Schur function indexed by this new list. Otherwise, repeatedly
perform the following steps on the list (with infinitely many zero parts appended). Initialize a
sign variable ǫ = +1. Look for the unique ascent a < b in the current list. If b = a + 1, then
return zero as the answer. Otherwise replace the sublist (a, b) by (b − 1, a + 1), replace ǫ by
−ǫ, and continue. We eventually return zero or obtain a weakly decreasing list of nonnegative
integers. In the latter case, return ǫ times the Schur function indexed by this list.

This algorithm is a version of Littlewood’s method for straightening Jacobi–Trudi determi-
nants [11]. Given any list of integers α = (α1, . . . , αL), let D(α) be the determinant of the L×L
matrix with i, j-entry hαi+j−i. For an integer partition µ, D(µ) is the Schur function sµ by the
Jacobi–Trudi formula. For any α, D(α) is either 0 or ±sν for some partition ν. We can find ν by
repeatedly interchanging rows i and i+1 of the matrix where αi < αi+1. Each such interchange
causes a sign change and replaces parts αi and αi+1 in α by αi+1 − 1 and αi + 1, respectively.
Comparing to the previous paragraph, we see that Sm(sµ) is none other than D(m,µ1, . . . , µL).

Example 1. Given µ = (8, 8, 8, 4, 4, 2, 2, 1) and m = −2, we compute

S−2(sµ) = S(−2,8,8,8,4,4,2,2,1) = −S(7,−1,8,8,4,4,2,2,1) = +S(7,7,0,8,4,4,2,2,1)

= −S(7,7,7,1,4,4,2,2,1) = +S(7,7,7,3,2,4,2,2,1) = −S(7,7,7,3,3,3,2,2,1)

= −s(777333221).

By similar calculations, we find the values of Sm(sµ) shown in Table 1.

It is not obvious that the two methods we have described for computing Sm(sµ) always give
the same result. We prove this fact later using abacus-histories, and we will also give direct
combinatorial proofs of (1) and (7).
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2.3 Jing’s Creation Operators Hm

Here is a plethystic definition of Jing’s creation operators Hm. As in [4, (2.2)], for all m ∈ Z

and P ∈ Λ, let

Hm(P ) =

{

P

[

X +
q − 1

z

] ∞
∑

k=0

hkz
k

}∣

∣

∣

∣

∣

zm

. (17)

In this case, P [X + (q − 1)/z] denotes the image of P under the plethystic substitution sending
each pn to pn + (qn − 1)/zn.

Alternatively, we could define

Hm =
∑

c≥0

qc Sm+c ◦h
⊥
c . (18)

We prove the equivalence of definitions (17) and (18) in Section 5.
We can compute Hm(sµ) via Ferrers diagrams as follows. Starting with the diagram of µ,

do the following steps in all possible ways. First choose a nonnegative integer c. Then remove
a horizontal strip of c cells from µ to get some shape ν. Compute Sm+c(ν) as described earlier
to obtain zero or a signed Schur function ±sλ. Record qc times the answer as one of the terms
in the Schur expansion of Hm(sµ). By iterating this description, it is evident that for every
list of integers α, the Schur coefficients of Hα are polynomials in q with integer coefficients.
Jing [6] proved that when α is a partition µ, Hµ = Hµ1

◦ · · · ◦ HµL
(1) is none other than the

Hall–Littlewood symmetric function indexed by µ.

2.4 The Creation Operators Cm and Bm

We use [4, Remark 3.7, pg. 835] as our plethystic definition of the creation operator Cm. For
m ∈ Z and P ∈ Λ, let

Cm(P ) =

{

(−q−1)m−1P

[

X +
q−1 − 1

z

] ∞
∑

k=0

hkz
k

}∣

∣

∣

∣

∣

zm

. (19)

This operator is a variation of Hm obtained by replacing q by 1/q in Hm, and then multiplying
the output by a global factor (−1/q)m−1. So (18) leads at once to the following alternative
definition of Cm:

Cm = (−q−1)m−1
∑

c≥0

q−c Sm+c ◦h
⊥
c . (20)

Proposition 3.6 of [4] proves an inverse version of this identity, namely

Sm = (−q)m−1
∑

i≥0

Cm+i ◦ e
⊥
i .

Creation operators satisfy some useful commutation relations. For example, Proposition 3.2
of [4] shows that for m,n ∈ Z,

qCm ◦Cn −Cm+1 ◦Cn−1 = Cn ◦Cm−qCn−1 ◦Cm+1,

and in particular qCm ◦Cm+1 = Cm+1 ◦Cm. Analogous relations for Hm were proved much
earlier by Jing (see (1.1) in [6] or (0.18) in [7]).
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Finally, we define the creation operator Bm by conjugating Hm by ω (see [4, pg. 829]):

Bm = ω ◦Hm ◦ω. (21)

Recall that ω is the linear operator on Λ sending each Schur function sλ to sλ′ , where λ′ is the
partition conjugate to λ obtained by transposing the Ferrers diagram of λ. Proposition 3.5 of [4]
shows that for m+ n > 0, Bn ◦Cm = qCm ◦Bn.

2.5 Algebraic Rules for Conjugation by ω

Let Cω denote conjugation by ω, which sends any operator G on Λ to Cω(G) = ω ◦G ◦ ω. We
now give some useful identities involving Cω. First,

Cω(Mf ) = Mω(f) for all f ∈ Λ. (22)

To check this, recall that ω is a ring homomorphism on Λ and an involution (ω ◦ω = id). So for
any P ∈ Λ,

Cω(Mf )(P ) = ω(Mf (ω(P ))) = ω(f · ω(P )) = ω(f) · ω(ω(P )) = ω(f) · P = Mω(f)(P ).

Second, ω⊥ = ω. This follows since ω is an involution and an isometry (relative to the Hall
scalar product), which means that for all P,Q ∈ Λ, 〈ω(P ), Q〉 = 〈P, ω(Q)〉 = 〈ω⊥(P ), Q〉.

Third,
Cω(f

⊥) = (ω(f))⊥ for all f ∈ Λ. (23)

To see this, we use the first two facts and the adjoint property (F ◦G)⊥ = G⊥ ◦F⊥ to compute:

Cω(f
⊥) = ω ◦ (Mf )

⊥ ◦ ω = ω⊥ ◦ (Mf )
⊥ ◦ ω⊥ = (ω ◦Mf ◦ ω)⊥ = (Mω(f))

⊥ = (ω(f))⊥.

Fourth, using (16) and Cω(F ◦G) = Cω(F ) ◦ Cω(G), we find that

Cω(Sm) =
∑

c≥0

(−1)cCω(Mhm+c
) ◦ Cω(e

⊥
c ) =

∑

c≥0

(−1)cMem+c
◦ h⊥c .

Fifth, using this result and (18), we get

Bm = Cω(Hm) =
∑

d≥0

qdCω(Sm+d) ◦ Cω(h
⊥
d ) =

∑

c≥0

∑

d≥0

qd(−1)cMem+d+c
◦ h⊥c ◦ e⊥d .

So, we can compute Bm(sµ) via Ferrers diagrams as follows. Starting with the diagram of µ,
do the following steps in all possible ways. First, choose integers c, d ≥ 0. Remove a vertical
strip of d cells from µ, then remove a horizontal strip of c cells, then add a vertical strip of
m+d+ c cells. Record qd(−1)c times the Schur function indexed by the new shape as one of the
terms in the Schur expansion of Bm(sµ). Later, we use abacus-histories to find a more efficient
combinatorial rule for computing this Schur expansion.
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3 Combinatorial Development of Creation Operators

This section develops combinatorial formulas for the Schur expansions of G(sµ), where sµ is
any Schur function and G is one of the operators Mhm

, h⊥m, Mem, e
⊥
m, ω, Sm, Hm, Cm, or Bm.

These formulas are based on the abacus model for representing integer partitions. James and
Kerber [5] introduced abaci to prove facts about k-cores and k-quotients of integer partitions.
Abaci with labeled beads can be used to prove many fundamental facts about Schur functions,
including the Pieri Rules for expanding sµhk and sµek and the Littlewood–Richardson Rule [12].
In our work here, it suffices to consider unlabeled abaci. We introduce the new ingredient of
tracking the evolution of the abacus over time to model compositions of operators applied to
a given Schur function. This leads to new combinatorial objects called abacus-histories that
model the Schur expansions of Hα, Cα, Bα, and other symmetric functions built by composing
creation operators.

3.1 The Abacus Model

First we review the correspondence between partitions and abaci. Suppose N > 0 is fixed
and µ = (µ1, µ2, . . . , µN ) is an integer partition (weakly decreasing sequence) consisting of N
nonnegative parts. Let δ(N) = (N − 1, N − 2, . . . , 2, 1, 0). The map sending µ to µ + δ(N) =
(µ1 +N − 1, µ2 +N − 2, . . . , µN ) is a bijection from the set of weakly decreasing sequences of
N nonnegative integers onto the set of strictly decreasing sequences of N nonnegative integers.
We visualize the sequence µ + δ(N) by drawing an abacus with positions numbered 0, 1, 2, . . .,
and placing a bead in position µi+N − i for 1 ≤ i ≤ N . We use µ+ δ(N) rather than µ because
each position can hold at most one bead. To formalize this concept, we define an N -bead abacus

to be a word w = w0w1w2 · · · with all wi ∈ {0, 1} and wi = 1 for exactly N indices i. Here
wi = 1 means the abacus has a bead in position i, while wi = 0 means the abacus has a gap in
position i. For example, if N = 10 and µ = (8, 8, 8, 4, 4, 2, 2, 1, 0, 0), the associated abacus is

w = 11010110011000011100000 · · · . (24)

In the theory of symmetric functions, we usually identify two partitions that differ only by
adding or deleting zero parts. In fact, it is often most convenient to regard an integer partition
as an infinite weakly decreasing sequence ending in infinitely many zeroes. To model such a
sequence µ as an abacus, we use a doubly-infinite word w = (wi : i ∈ Z) such that wi = 1 for
all i < 0, w0 = 0, and wi = 1 for only finitely many indices i ≥ 0. The nonzero parts of µ
can be recovered from the abacus w by counting the number of gaps to the left of each bead on
the positive side of the abacus. The convention of putting the leftmost gap at position 0 is not
essential; any left-shift or right-shift of the word w leads to the same combinatorics.

We can also construct the abacus for a partition µ by following the frontier of the Ferrers
diagram of µ. As illustrated in Figure 1, the frontier consists of infinitely many north steps
(corresponding to the infinitely many zero parts at the end of the sequence µ), followed by a
sequence of east and north steps that follow the edge of the diagram, followed by infinitely many
east steps at the top edge. Replacing each north step with a bead, replacing each east step
with a gap, and declaring the first east step to have index 0 produces the doubly-infinite abacus
associated with µ. The singly-infinite abacus w in (24) is the ten-bead version of the full abacus
shown in Figure 1, obtained by discarding all beads to the left of the tenth bead from the right
and shifting the origin to this location.
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... ...

0 1 2 ...

Figure 1: The Ferrers diagram of µ and the doubly-infinite abacus built from the frontier of µ.

For convenience, we mostly use N -bead abaci in this paper, which leads to identities valid for
symmetric polynomials in N variables. However, for certain abacus moves to work, we must be
sure to pad µ with enough zero parts (corresponding to beads at the far left end of the abacus)
since these beads might participate in the move. This reflects the algebraic fact that some
symmetric function identities are only true provided the number of variables is large enough.

3.2 Abacus Versions of Mhm
and h⊥

m

Now we describe how to compute G(sµ) using abaci, for various operators G. Here and below, we
represent the input sµ as an N -bead abacus drawn in the top row of a diagram. Each operator
G acts by moving beads on the abacus according to certain rules, producing several possible
new abaci that may be multiplied by signs or weights (powers of q). Each abacus stands for the
Schur function indexed by the partition corresponding to the abacus. We make a diagram for
each possible new abacus produced by G, where the output abacus appears in the second row
(see the figures below for examples). Moving downward through successive rows represents the
passage of time as various operators are applied to the initial abacus. This convention lets us use
a two-dimensional picture to display the evolution of an abacus as a whole sequence of operators
are performed. It is much more difficult to visualize such an operator sequence using Ferrers
diagrams, particularly when some operators act by adding cells and others act by removing cells.

As our first example, consider the computation of Mhm
(sµ) = hmsµ using abaci. By the

Pieri Rule (9), we know hmsµ is the sum of all sλ where λ is obtained by adding a horizontal
strip of m cells to the diagram of µ in all possible ways. Using the correspondence between
the frontier of µ and the abacus for µ, it is routine to check that adding such a horizontal strip
corresponds to moving various beads right a total of m positions on the abacus. (See [12] or [13,
Sec. 10.10] for more details.) A given bead may move more than once, but no bead may move
into a position originally occupied by another bead.

To record this move in an abacus-history diagram, we start in row 1 with an N -bead abacus
for µ, where µ must end in at least one part equal to 0. We draw the beads as dots located at
lattice points in row 1. Next, in all possible ways, we draw a total of m east steps starting at
various beads, then move every bead 1 step south to represent the passage of time. For example,
Figure 2 shows the abacus-histories encoding the computation

Mh2
(s(3110)) = s(5110) + s(4210) + s(4111) + s(3310) + s(3211).
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Figure 2: Computing Mh2
(s(3110)) using abacus-histories.

Figure 3: Computing h⊥2 (s(332)) using abacus-histories.

Note that the extra zero part is needed to accommodate horizontal strips that use cells in the
row below the last nonzero part of µ.

Next consider how to compute h⊥m(sµ). Recall that the answer is the sum of all sν where ν
can be obtained by removing a horizontal strip of m cells from the Ferrers diagram of µ. To
execute this action on an abacus, we move various beads west a total of m positions, avoiding
collisions with the original locations of the beads. Then we move every bead south one step to
represent the passage of time. For example, Figure 3 shows the abacus-histories encoding the
computation

h⊥2 (s(332)) = s(330) + s(321).

Note that µ need not be padded with zero parts when using this rule.

3.3 Abacus Versions of Mem and e⊥m

Now we describe abacus implementations of Mem and e⊥m. Recall Mem(sµ) is the sum of all sλ
where λ is obtained by adding a vertical strip of m cells to the Ferrers diagram of µ. Comparing
the frontiers of µ and λ, we see that adding such a vertical strip corresponds to simultaneously
moving m distinct beads east one step each. Beads cannot collide on the new abacus, but a
bead is allowed to move into a position vacated by another bead.

To record this move in an abacus-history diagram, start with an N -bead abacus for µ where
µ is padded with at least m zero parts. In all possible ways, pick a set of m beads that each
move southeast one step, while the remaining beads move south one step with no collisions. For
example, Figure 4 shows the abacus-histories encoding the computation

Me2(s(41100)) = s(41111) + s(42110) + s(51110) + s(42200) + s(52100).

Note that the m zero parts are needed to accommodate a vertical strip that we might add below
the last nonzero part of µ.

Next, e⊥m(sµ) is the sum of all sν where ν is obtained from the Ferrers diagram of µ by
removing a vertical strip of m cells. Starting with the abacus for µ, we pick a set of m beads
that each move southwest one step, while the remaining beads move south one step with no
collisions. For example, Figure 5 shows the abacus-histories encoding the computation

e⊥2 (s(442)) = s(431) + s(332).

Note that µ need not be padded with zero parts when using this rule.
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Figure 4: Computing Me2(s(41100)) using abacus-histories.

Figure 5: Computing e⊥2 (s(442)) using abacus-histories.

3.4 Effects of ω and Cω

We know ω(sµ) = sµ′ , where the Ferrers diagram of µ′ is found by transposing the diagram of
µ. This transposition interchanges the roles of north and east steps on the frontier of µ and
reverses the order of these steps. So, ω acts on the doubly-infinite abacus for µ by interchanging
beads and gaps and reversing the abacus. Let us call this move an abacus-flip.

Now suppose we know a description of an operator G in terms of moves on an abacus. Then
Cω(G) = ω ◦G ◦ ω acts on the abacus for sµ by doing an abacus-flip, then doing the moves for
G, then doing another abacus-flip. Therefore, we obtain a description of the operator Cω(G)
from the given description of G by interchanging the roles of beads and gaps, and interchanging
the roles of east and west.

For example, consider G = Mhm
and Cω(G) = Mem. We know G acts on the abacus for sµ by

moving some beads m steps east, avoiding the original positions of all beads. Therefore, we can
say that Cω(G) acts on the abacus for sµ by moving some gaps m steps west avoiding the original
positions of all gaps. One may check that this description of Mem (involving gap motions) is
equivalent to the description given earlier (involving bead motions). When composing several
operators to build bigger abacus-histories, it is often easier to work with descriptions that always
move beads rather than gaps.

3.5 Abacus Version of Sm

We develop an initial abacus-history implementation of the operator Sm based on formula (16),
which will subsequently be simplified using a sign-reversing involution on abacus-histories. Given
any partition µ, we know by (16) that

Sm(sµ) =
∑

c≥0

(−1)chm+ce
⊥
c (sµ).

To compute this with an abacus-history, start with the abacus for µ (padding µ with a zero part
if needed) and perform the following steps in all possible ways. Choose an integer c ≥ 0. In
the first time step, apply e⊥c by moving c distinct beads one step southwest while the remaining
beads move one step south with no collisions. In the second time step, apply hm+c by moving
some beads a total of m + c steps east, never moving into a position occupied by a bead at
the start of this time step; then move all beads one step south. Record a term (−1)c times the
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Schur function corresponding to the final abacus. For example, Figure 6 shows how to compute
S1(s(3110)) via abacus-histories. When c = 0, we obtain the three positive objects labeled A, B,
C; when c = 1, we obtain the nine negative objects labeled D through L; and so on. Adding up
the 23 signed Schur functions encoded by these abaci, there is massive cancellation leading to
the answer −s(2211).

U
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E

A B
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J

N

R

V
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G

K
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W

T

P

L

D
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Figure 6: Initial computation of S1(s(3110)) using abacus-histories.

We now introduce a sign-reversing involution on abacus-histories that explains the cancel-
lation in the last example. Suppose an abacus-history appearing in the computation of Sm(sµ)
contains a bead that moves southwest, then moves east i > 0 steps and then south, as shown
on the left in Figure 7. By changing the first two steps from southwest-east to a single south
step, the bead now moves as shown on the right in Figure 7, where the e denotes a gap on
the abacus that no bead visits during the second time interval. Conversely, if a bead initially
moves south and then has a gap to its left that no bead visits, then we can replace this initial
south step with a southwest step followed by an east step. These path modifications change c
by 1 and hence change the sign of the abacus-history, while preserving the requirement of taking
m+ c total east steps in the second time interval. The involution acts on an abacus-history by
scanning for the leftmost occurrence of one of the patterns in Figure 7 and replacing it with the
other pattern. It is clear that doing the involution twice restores the original object. The fixed
points of the involution (which could be negative) consist of all abacus-histories avoiding both
patterns in Figure 7. For example, applying the involution to the objects in Figure 6 produces
the following matches:

A ↔ F, B ↔ H, C ↔ K, D ↔ S, E ↔ R, G ↔ Q, I ↔ O, J ↔ P, M ↔ V, N ↔ U, T ↔ W.

We are left with the single negative fixed point L, confirming that S1(s(3110)) = −s(2211).
We can now prove a formula for Sm(sµ) that interprets Sm as a bead-creation operator

for abacus-histories. As consequences of this formula, we can finally justify equations (1), (7),
and the technique for computing Sm(sµ) used in Example 1. To state the formula, we need some
preliminary definitions. For any partition µ, assign a label and a sign to each gap on the abacus
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Figure 7: Cancellation move for abacus-histories appearing in Sm(sµ).

for µ as follows. Given a gap with g gaps strictly to its left and b beads to its right, let this gap
have label g− b and sign (−1)b. Here is another way to compute the gap labels. The gap to the
right of the rightmost bead on the abacus for µ has label µ1. Any gap i positions to the right
(resp. left) of this gap on the abacus has label µ1 + i (resp. µ1 − i), as is readily checked.

Theorem 2. For any partition µ and integer m, Sm(sµ) is 0 if no gap in the abacus for µ has

label m. Otherwise, we compute Sm(sµ) by filling the unique gap labeled m with a new bead,

then multiplying the Schur function for the new abacus by the sign of this gap.

Proof. First compute Sm(sµ) by generating a collection of signed abacus-histories, as described
at the start of this section. Next apply the sign-reversing involution to cancel out pairs of
objects. We must now analyze the structure of the fixed points that remain. All fixed points
avoid occurrences of both patterns shown in Figure 7. From our abacus-history characterization
of the action of Sm(sµ), there are only two other possible move patterns for a bead starting in
the abacus for sµ. The first is for a bead to move south and then east zero or more east steps,
but there must be another bead southwest of this bead’s starting point (i.e., in the position
marked e on the right side of Figure 7). The second is for a bead to move southwest and then
south with no intervening east steps. In the second case, we refer to this pair of steps as a
zig-down move and say that the bead zigs down.

Given a fixed point, suppose there is a bead Q on the input abacus that makes a zig-down
move. On one hand, suppose there is a bead P immediately to the left of Q (i.e., with no gaps
in between). Then P must also zig down, since there is no room to do anything else. On the
other hand, suppose R is the next bead somewhere to the right of Q (if any). There must be
a vacancy immediately southwest of R’s initial position (since Q zigs down). It follows that R
must also zig down to avoid the two forbidden patterns. Define a block of beads on an abacus to
be a maximal set of beads with no gaps between any pair of them. Iterating our two preceding
observations, we conclude that if some bead zigs down in a fixed point, then all beads to its right

and all beads to its left in its block must also zig down.
Next consider a bead S on the input abacus that has g > 0 gaps to its right followed by

another bead T that does not zig down. On one hand, S does not zig down (or else T would
too). On the other hand, for T to avoid the second pattern in Figure 7, bead S must move
south, then g steps east, then south. We now see that all fixed points for Sm(sµ) must have the
following structure. There are zero or more beads at the right end that all zig down, starting
with some bead Q at the beginning of a block of beads. The motions of all remaining beads are
uniquely determined (they move east as far as possible), except for the next bead P to the left
of Q. If beads P and Q are separated by g > 0 gaps on the input abacus, then P has the option
of moving south, then i steps east, then south, for any i satisfying 0 ≤ i < g. As a special case,
if no beads zig down, then P is the rightmost bead on the abacus, which can move i steps east

Abacus-histories and creation operators 13



m=−3:

m=10:

m=3:

8 9 104321−3−6−8 −2 11

m=−8:

m=−6:

m=1:

m=−2:

Some fixed points:

Input abacus (aligned with output) with gap labels:

Figure 8: Fixed points in the computation of Sm(s(888442210)) for various values of m. Newly
created beads are circled.

for any i ≥ 0. For example, Figure 8 illustrates some of the fixed points for Sm(s(888442210)) for
various choices of m (compare to Example 1).

It is visually evident from this example that, for general µ and any fixed point of Sm(sµ),
the output abacus arises from the input abacus by shifting every bead one position to the left
(which corresponds to deleting a zero part from the end of µ) and then filling one gap with a
new bead. Suppose this gap has g gaps strictly to its left and b beads to its right on the abacus
for µ. The label of this gap is, by definition, g− b. To complete the proof, we need only confirm
that g − b = m. By our characterization of fixed points, there are b southwest steps in time
interval 1 (since all beads to the right of this gap zig down). By (16) and our observations at the
beginning of this section, these southwest steps arise from the action of e⊥b . As such, there must
be m+ b east steps arising from the subsequent action of hm+b. But, as illustrated in Figure 8,
these east steps are in bijection with the gaps to the left of the new bead. So the number of
gaps g is m+ b. It follows that g − b = (m+ b)− b = m, as needed.

Using the second method of computing gap labels, we see that for any partition µ and any
integer m ≥ µ1, Sm(sµ) = +s(m,µ). Iterating this result starting with s0 = 1, we obtain (1).
Similarly, formula (7) can be deduced quickly from Theorem 2 by the following abacus-based
proof. The left side of (7) acts on sµ by first creating a new bead in the gap labeled n, then
creating a new bead in the gap now labeled m (returning zero if either gap does not exist).
One readily checks that creating a new bead in the gap labeled n has the effect of decrementing
all remaining gap labels. Thus, Sm ◦Sn acts by filling the gap labeled n, then filling the gap
originally labeled m+1, if these gaps exist. Similarly, Sn−1 ◦Sm+1 acts by filling the gap labeled
m+ 1, then filling the gap originally labeled n, if these gaps exist. These actions are the same
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except for the order in which the two new beads are created, which causes the two answers to
differ by a sign change. As a special case, when n = m+1, both sides of (7) output zero because
the second operator on each side tries to fill a gap that no longer exists. This completes the proof
of (7). Finally, the computations in Example 1 are now justified by combining formulas (1), (3),
and (7).

By applying the results in Section 3.4, we also obtain a dual theorem characterizing the
action of Cω(Sm) as a “gap-creation operator” or a “bead-destruction operator.” Specifically,
given a bead with b beads strictly to its right and g gaps to its left, let this bead have label
b− g and sign (−1)g. (Note that this labeling of beads is related to, but different from, our prior
labeling scheme for gaps.) If the abacus for µ has a bead labeled m, then Cω(Sm)(sµ) is the sign
of this bead times sν, where we get the abacus for ν by replacing the bead labeled m by a gap.
If the abacus for µ has no bead labeled m, then Cω(Sm)(sµ) is zero.

3.6 Abacus Versions of Hm and Cm

With Theorem 2 in hand, we can describe how to compute Hm(sµ) and Cm(sµ) using abacus-
histories. Our implementation of Hm is based on formula (18). Starting with the abacus for µ,
do the following steps in all possible ways. Choose an integer c ≥ 0. In time step 1, apply h⊥c
by moving some beads a total of c steps west (avoiding original bead positions), then moving
all beads one step south. In time step 2, apply Sm+c by creating a new bead in the gap now
labeled m+ c (if any). The Schur function corresponding to the new abacus is weighted by qc

times the sign of the gap where the new bead was created.

2−2 10 −1 0 1 −1 0 2 −1 1

Figure 9: Computing H−2(s(31)) using abacus-histories.

For example, by drawing the objects in Figure 9, we find

H−2(s(31)) = +s(200) − q1s(200) − q2s(110) + q3s(110). (25)

In these abacus-histories, we have included gap labels in the middle row and circled the new
beads created by Sm+c. By making similar pictures, one can check that

H1(s(31)) = −s(221) + q1s(221) + q2s(320) + q2s(311) + q3s(410). (26)

Note that these answers are neither Schur-positive nor Schur-negative. We observe that every
original bead takes two consecutive south steps in these abacus-histories. By combining these
steps into a single south step, we can shorten the time needed for the Hm operator from two
time steps to one time step. We do this from now on.

We can compute Cm(sµ) by generating exactly the same collection of abacus-histories used
for Hm(sµ). The only difference is that each weight qc is replaced by q−c, and the final answer
is multiplied by the global factor (−1/q)m−1. For example,

C−2(s(31)) = −q3s(200) + q2s(200) + q1s(110) − q0s(110);

C1(s(31)) = −s(221) + q−1s(221) + q−2s(320) + q−2s(311) + q−3s(410).
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3.7 Abacus Version of Bm

Finally, we describe how to compute Bm(sµ) using abacus-histories. Since Bm = Cω(Hm) =
ω◦Hm ◦ω, one approach is to calculate Hm(sµ′) as described earlier, then conjugate all partitions
in the resulting Schur expansion. For example, using (25) and (26), we compute:

B−2(s(211)) = +s(11) − q1s(11) − q2s(2) + q3s(2);

B1(s(211)) = −s(32) + q1s(32) + q2s(221) + q2s(311) + q3s(2111).

Alternatively, we can use the formula

Bm =
∑

d≥0

qdCω(Sm+d) ◦ e
⊥
d

proved in Section 2.5. Starting with the doubly-infinite abacus for µ, do the following steps in
all possible ways. Choose an integer d ≥ 0. In time step 1, apply e⊥d by moving d distinct beads
one step southwest while the remaining beads move one step south with no collisions. In time
step 2, apply Cω(Sm+d) by destroying the bead with label m + d (if any). The Schur function
corresponding to the new abacus is weighted by qd times the sign of the destructed bead.

4 Abacus-History Models for Hα, Cα, Bα, etc.

4.1 Combinatorial Formulas

Now that we have abacus-history interpretations for the operators Sm, Hm, Cm, Bm, h⊥m, etc.,
we can build abacus-history models giving the Schur expansion when any finite sequence of
these operators is applied to any Schur function. We simply concatenate the diagrams for
the individual operators in all possible ways and sum the signed, weighted Schur functions
corresponding to the final abaci. We illustrate this process here by describing combinatorial
formulas for Hα, Cα, Bα, and the analogous symmetric functions Hα(sµ), Cα(sµ), and Bα(sµ)
obtained by replacing 1 by sµ in (4), (5), and (6).

Fix a sequence of integers α = (α1, α2, . . . , αL). We compute Hα = Hα1
◦ · · · ◦HαL

(1) using
abacus-histories that take L time steps. We start with an empty abacus (corresponding to the
input s(0) = 1) where the gap in each position i ≥ 0 has label i. In time step 1, we cannot
move any beads west, so we create a new bead in the gap labeled αL. In time step 2, we choose
c2 ≥ 0, move the lone bead west c2 steps and south once, then create a new bead in the gap
now labeled αL−1 + c2. In time step 3, we choose c3 ≥ 0, move the two beads west a total of
c3 steps and south, then create a new bead in the gap now labeled αL−2 + c3. And so on. If
at any stage there is no gap with the required label, then that particular diagram disappears
and contributes zero to the answer. If the diagram survives through all L time steps, then its
final abacus contributes a Schur function weighted by qc2+c3+···+cL times the signs arising from
all the bead creation steps. Thus, the final power of q is the total number of west steps taken
by all the beads, while the final sign is −1 raised to the total number of beads to the right of
newly created beads in all time steps. The computation for Hα(sµ) is the same, except now we
start with the abacus for µ instead of an empty abacus. Here we might move some beads c1 ≥ 0
steps west in the first time interval, leading to the creation of a new bead in the gap now labeled
αL + c1. When µ = 0 we must have c1 = 0.
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Figure 10: Computing H(123) using abacus-histories.

The following remarks can aid in generating the diagrams for Hα. The default starting

positions for the new beads are αL, αL−1 + 1, αL−2 + 2, . . . , α1 +L− 1. These are the positions
(not gap labels) on the initial abacus where new beads would appear if all ci were zero. (This
follows since gap labels coincide with position numbers on an empty abacus, and each bead
creation decrements all current gap labels.) The actual starting positions for the new beads are

αL + c1, αL−1 + 1 + c2, αL−2 + 2 + c3, . . . , α1 + L+ cL;

these are obtained by moving each default starting position east by the number of west steps in
the preceding row.

Example 3. Figure 10 uses abacus-histories to compute H(123) = H1(H2(H3(1))). For brevity,
we omit the top rows, which have no beads in any positive position. All three new beads have
default starting position 3. There are 18 objects in all, but we find two pairs of objects that
cancel (C with F, and I with N). We are left with

H(123) =q8s(600) + (q6 + q7)s(510) + (q6 + q5 + q4 − q3)s(420)

+ q5s(411) + q5s(330) + (q4 + q3 − q2)s(321) + (q2 − q)s(222).

We compute Cα (resp. Cα(sµ)) by making exactly the same abacus-histories used for Hα

(resp. Hα(sµ)). The only difference is that the q-weight of each abacus-history is now q−(c1+···+cL)

and the final answer must be multiplied by (−1/q)|α|−ℓ(α), where |α| = α1+· · ·+αL and ℓ(α) = L.
Since Bm = Cω(Hm) for every integer m, we can compute Bα1

◦ · · · ◦ BαL
(sµ) by applying

Hα to sµ′ as described above, then conjugating all partitions in the resulting Schur expansion.
Alternatively, we can chain together the moves for the Bαi

described at the end of Section 3.7.
Beware that Bα (as defined in [4]) is found by starting with 1 and applying Bα1

, Bα2
, . . ., BαL

in this order.

4.2 Application to Three-Row Hall–Littlewood Polynomials

As we have seen, for general α the Schur expansion of Hα has a mixture of positive and negative
terms. But for partitions ν, a celebrated theorem of Lascoux and Schützenberger [10] shows
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Figure 11: An involution on abacus-histories with three beads.

that all Schur coefficients of Hν are polynomials in q with nonnegative integer coefficients (the
Kostka–Foulkes polynomials). According to this theorem, the coefficient of sλ in Hν is the sum
of qcharge(T ) over all semistandard Young tableaux T of shape λ and content ν, where charge
is computed from T by an explicit combinatorial rule (see [1], [15, pg. 242], and [16, Sec. 1.7]
for more details). Kirillov and Reshetikhin [8, 9] gave another combinatorial formula for the
Kostka–Foulkes polynomials as a sum over rigged configurations weighted by a suitable charge
statistic. A detailed survey of combinatorial formulas for Hall–Littlewood polynomials and their
applications to representation theory may be found in [2].

Our combinatorial formula for Hα based on abacus-histories holds for general integer se-
quences α, but it is not manifestly Schur-positive when α happens to be an integer partition.
On the other hand, our q-statistic (the total number of west steps in the object) is much simpler
to work with compared to the complicated charge statistic on tableaux. As an application of our
abacus-history model, we now give a simple bijective proof of the Schur-positivity of Hν when
ν is a partition with at most three parts.

If ν has only one part, then it is immediate that Hν = Hν1(1) = sν1 . Next suppose ν =
(ν1 ≥ ν2) has two parts. When computing Hν via abacus-histories, the default starting positions
of the two beads are ν2 and ν1 + 1 > ν2. When the second bead is created, the first bead has
moved to a column ν2 − c2 for some c2 ≥ 0, and the second bead actually starts in column
ν1 + 1 + c2 > ν2 − c2. This means that all abacus-histories for Hν have positive sign, and our
formula is already Schur-positive in this case.

Now let ν = (ν1 ≥ ν2 ≥ ν3) have three parts. As before, since ν2 ≥ ν3, the second bead
always gets created to the right of the first bead’s current column. For similar reasons, the
bead created third must start to the right of the first bead in the lowest row. But it is possible
that this third bead appears to the left of the second bead’s position in that row, leading to a
negative object that must be canceled.

We cancel these objects using the involution suggested in Figure 11. Given a negative object
as just described, let k be the distance between the new bead in the lowest row and the bead
to its right. Let a, b, c ≥ 0 count west steps as shown on the left in the figure, so bead 1’s path
is WaSWbS and bead 2’s path is WcS. The involution acts by replacing a by a − k and b by
b+ k, which causes bead 2’s actual starting position to move left k columns and bead 3’s actual
starting position to move right k columns. This action matches the given negative object with
a positive object having the same number of west steps (hence the same q-power) and the same
bead positions on the final abacus (hence the same Schur function).

Going the other way, consider a positive object (as shown on the right in Figure 11) where
the new bead in the bottom row is k columns to the right of the second bead, bead 1’s path
is Wa′SWb′S, and bead 2’s path is Wc′S. If k ≤ b′, then the involution acts by replacing a′ by
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a′ + k and b′ by b′ − k, causing the other two paths to switch places as before. If k > b′, then
this positive object is a fixed point of the involution.

To see that this involution really works, we must check a few items. Fix an arbitrary negative
object with notation as in Figure 11. First, we must show k ≤ a, since a′ is not allowed to be
negative. On one hand, the actual starting position of the new bead in the bottom row is
ν1+2+b+c. On the other hand, the bead created in the middle row starts in position ν2+1+a
and ends in the bottom row in position ν2 + 1 + a− c. Therefore,

k = (ν2 + 1 + a− c)− (ν1 + 2 + b+ c) = a− (b+ 2c+ 1 + ν1 − ν2). (27)

Since b, c ≥ 0 and ν1 ≥ ν2, the quantity subtracted from a is strictly positive, so we actually
have k < a.

Second, we show that applying the involution to a negative object does not cause the first
two beads to collide in the middle row. After replacing a by a′ = a − k, the first bead moves
from the top row to the middle row in position ν3 − a′ = ν3 − a + k. The bead created in the
middle row now starts in position ν2 + 1 + a′ = ν2 + 1 + a − k and moves left c′ = c steps to
position ν2 + 1 + a− k − c before moving down to the bottom row. Therefore, to avoid a bead
collision, we need ν3 − a + k < ν2 + 1 + a − k − c, or equivalently 2(a − k) > c + ν3 − ν2 − 1.
Using (27) to substitute for a − k, we need 2(b + 2c + 1 + ν1 − ν2) > c + ν3 − ν2 − 1, which
rearranges to 2b+ 3c+ 3 + 2ν1 − ν2 − ν3 > 0. This is true, since b, c ≥ 0 and ν1 ≥ ν2 ≥ ν3.

Third, we show that applying the involution twice restores the original object. This follows
since the value of k is the same for the object and its image, and b′ = b+k automatically satisfies
k ≤ b′. We have now proved that our involution is well-defined and cancels all negative objects.

By analyzing the fixed points of this involution more closely, we can prove the following
explicit formula for the Schur coefficients of Hν when ν is a three-part partition.

Theorem 4. For all partitions ν = (ν1 ≥ ν2 ≥ ν3 > 0) and λ = (λ1 ≥ λ2 ≥ λ3 ≥ 0) such that

|λ| = |ν|, the coefficient of sλ in Hν is

min(λ1−λ2,λ2−λ3,ν3−λ3,λ1−ν1)
∑

b=0

qν3−λ3+λ1−ν1−b. (28)

Proof. We fix λ, ν as in the theorem statement and enumerate the positive fixed points of the
involution. To obtain an uncanceled term sλ in the computation of Hν , the beads in the abacus-
history must move as follows. The first bead starts in position ν3 and ends in position λ3 after
moving along some path WaSWbS. (We switch here to unprimed parameters for the positive
fixed point.) The second bead starts in position ν2 +1+ a and ends in position λ2 +1 (since all
negative objects cancel) after moving along some path WcS. The third bead starts in position
ν1 + 2 + b + c and ends (without moving) in position λ1 + 2. We deduce that λ3 = ν3 − a − b,
λ2 +1 = ν2 +1+ a− c, and λ1 +2 = ν1 +2+ b+ c. Since λ and ν are fixed, the entire object is
uniquely determined once we select the value of b. Eliminating a and c, we see that the q-weight
of the object is

qa+b+c = qν3−λ3+λ1−ν1−b.

Which choices of b are allowed? We certainly need b ≥ 0, as well as a ≥ 0 and c ≥ 0. Using
a = ν3 − λ3 − b and c = λ1 − ν1 − b, the conditions on a and c are equivalent to b ≤ ν3 − λ3

and b ≤ λ1 − ν1. We also need the first two beads not to collide in the middle row, so we need
ν3−a < ν2+1+a− c. This condition is equivalent to b+λ3 < λ2+1 and, hence, to b ≤ λ2−λ3.
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Finally, letting k = (λ1 + 2)− (λ2 + 1) be the distance between the two rightmost beads in the
bottom row, we need k > b for this positive object to be a fixed point of the involution. This
condition rearranges to b ≤ λ1−λ2. Combining the five conditions on b leads to the summation
in the theorem statement.

It is also possible to derive (28) starting from the charge formula for the Schur expansion of
Hν . But such a proof is quite tedious, requiring a messy case analysis due to the complicated
definition of the charge statistic.

One might ask if the involution for three-row shapes extends to partitions ν with more
than three parts. While the same involution certainly applies to the first three rows of larger
abacus-histories, more moves are needed to eliminate all negative objects. Even in the case of
four-row shapes, the new cancellation moves are much more intricate than the move described
here. We leave it as an open question to reprove the Schur-positivity of Hν for all partitions
ν via an explicit involution on abacus-histories. It would also be interesting to find a specific
weight-preserving bijection between the set of fixed points for such an involution and the set of
semistandard tableaux.

5 Appendix: Proofs of Two Plethystic Formulas

This appendix proves the equivalence of the plethystic definitions and the algebraic definitions
of Sm and Cm. We require just three basic plethystic identities (see [14] for a detailed exposition
of plethystic notation including proofs of these facts). First, for any alphabets A and B and any
partition µ, we have the plethystic addition rule

sµ[A+B] =
∑

ν: ν⊆µ

sν [A]sµ/ν [B].

Second, for formal variables q and z and partitions ν ⊆ µ,

sµ/ν [q/z] =

{

(q/z)|µ/ν| if µ/ν is a horizontal strip;

0 otherwise.

Third, for all ν ⊆ µ,

sµ/ν [−1/z] = (−1)|µ/ν|sµ′/ν′ [1/z] =

{

(−1/z)|µ/ν| if µ/ν is a vertical strip;

0 otherwise.

Recall that HS(c) (resp. VS(c)) is the set of horizontal (resp. vertical) strips with c cells.
We prove the equivalence of the definitions (15) and (16) for Sm by showing that the two

formulas have the same action on the Schur basis. Taking P = sµ in (15) and using the rules
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above, we compute:

Sm(sµ) = sµ[X − (1/z)]
∑

k≥0

hkz
k

∣

∣

∣

∣

∣

∣

zm

=
∑

ν⊆µ

sν [X]sµ/ν [−1/z]
∑

k≥0

hkz
k

∣

∣

∣

∣

∣

∣

zm

=
∑

c≥0

∑

ν⊆µ:
µ/ν∈VS(c)

(−1/z)c
∑

k≥0

sνhkz
k

∣

∣

∣

∣

∣

∣

∣

∣

zm

=
∑

c≥0

∑

ν⊆µ:
µ/ν∈VS(c)

(−1)csνhm+c

=
∑

c≥0

(−1)cMhm+c
(e⊥c (sµ)).

This agrees with (16).
Now we prove the equivalence of (17) and (18). Applying (17) to P = sµ gives:

Hm(sµ) = sµ[(X − 1/z) + q/z]
∑

k≥0

hkz
k

∣

∣

∣

∣

∣

∣

zm

=
∑

ν⊆µ

sν [X − 1/z]sµ/ν [q/z]
∑

k≥0

hkz
k

∣

∣

∣

∣

∣

∣

zm

=
∑

c≥0

∑

ν⊆µ:
µ/ν∈HS(c)

(q/z)csν [X − 1/z]
∑

k≥0

hkz
k

∣

∣

∣

∣

∣

∣

∣

∣

zm

=
∑

c≥0

qc
∑

ν⊆µ:
µ/ν∈HS(c)

sν [X − 1/z]
∑

k≥0

hkz
k

∣

∣

∣

∣

∣

∣

∣

∣

zm+c

=
∑

c≥0

qc
∑

ν⊆µ:
µ/ν∈HS(c)

Sm+c(sν)

=
∑

c≥0

qc Sm+c





∑

ν⊆µ: µ/ν∈HS(c)

sν



 =
∑

c≥0

qc Sm+c(h
⊥
c (sµ)).

This agrees with (18).
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