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Abstract

Given a subgroup G of the symmetric group Sn, the cycle index polynomial
cycG is the average of the power-sum symmetric polynomials indexed by the
cycle types of permutations in G. By Pólya’s Theorem, the monomial expan-
sion of cycG is the generating function for weighted colorings of n objects, where
we identify colorings related by one of the symmetries in G. This paper devel-
ops combinatorial formulas for the fundamental quasisymmetric expansions and
Schur expansions of certain cycle index polynomials. We give explicit bijective
proofs based on standardization algorithms applied to equivalence classes of col-
orings. Subgroups studied here include Young subgroups of Sn, the alternating
groups An, direct products, conjugate subgroups, and certain cyclic subgroups
of Sn generated by (1, 2, . . . , k). The analysis of these cyclic subgroups when k
is prime reveals an unexpected connection to perfect matchings on a hypercube
with certain vertices identified.
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1. Introduction

1.1. Cycle Index Polynomials

Given a subgroup G of the symmetric group Sn, the cycle index polynomial
cycG is the average of the power-sum symmetric polynomials indexed by the
cycle types of permutations in G. (See §2 for precise definitons of these terms
and other notation used in the Introduction.) Pólya’s Theorem states that the
individual monomials in cycG correspond to weighted colorings of n objects,
where we identify colorings related by one of the symmetries in G.
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Like every symmetric polynomial, cycG has an expansion in terms of the
Schur basis {sλ}: for each integer partition λ of n, there is a unique scalar
c(G,λ) with cycG =

∑
λ∈Par(n) c(G,λ)sλ. As explained below, the coefficients

c(G,λ) are nonnegative integers that give the multiplicities of the irreducible
constituents in a certain linear representation of Sn. One main goal of this
paper is to develop concrete combinatorial formulas for these coefficients for
certain choices of G, and to prove these formulas via explicit bijections involving
weighted colorings. For example, Theorem 19 states that c(G,λ) counts the
number of standard tableaux of shape λ whose descent set lies in a prescribed
collection D that depends on G.

Since finding combinatorial expressions for Schur coefficients is often difficult,
another possibility is to write cycG in terms of Gessel’s fundamental basis {Fn,S}
for the space of quaisisymmetric polynomials [9]. In this case, for each subset S
of {1, 2, . . . , n−1} there is a unique scalar b(G,S) with cycG =

∑
S b(G,S)Fn,S .

A second goal of this paper is to give bijective proofs of combinatorial formulas
for the coefficients b(G,S) for many choices of the subgroup G. Here our typical
formula looks like

cycG(x1, . . . , xm) =
∑
s∈C

Fn,IDes(s)(x1, . . . , xm) (1)

where C is an explicit subset of Sn determined by G.
Finding F -expansions is a stepping-stone that gets us closer to the Schur

expansion compared to the original formulas involving power-sums or individual
monomials. In our specific problem, when C has the particular form

C = {s ∈ Sn : Des(s) ∈ D} (2)

for some collection D, then we are able to find Schur expansions via Theo-
rem 19. More generally, the combinatorial importance of F -expansions has
become increasingly prominent in the recent literature on Macdonald polyno-
mials, Lascoux–Leclerc–Thibon (LLT) polynomials, diagonal harmonics, and
Foulkes’s Conjecture; see, for instance, [12, 13, 14, 15, 21]. Egge and the present
authors [7] have given a combinatorial method for automatically converting any
F -expansion into a Schur expansion, although the resulting coefficients have
mixed signs in general. In an unpublished manuscript, Garsia and Remmel
gave an algebraic reformulation of the result in [7], which was recently proved
combinatorially by Gessel [10]. Assaf [2] has also developed powerful machinery
for combinatorially proving Schur positivity when certain axioms are satisfied.

We briefly mention some other research that highlights the growing signifi-
cance of quasisymmetric functions in modern algebraic combinatorics. Richard
Stanley used quasisymmetric functions in a crucial way in his enumeration of
reduced words for the longest word in a Coxeter group [33] and his study of
riffle shuffles [32]. Stanley’s chromatic symmetric functions [31] have been gen-
eralized to chromatic quasisymmetric functions [3, 16, 29]. Some informative
quasisymmetric expansions appear in [4, 8, 19, 24]. Sums of fundamental qua-
sisymmetric polynomials over sets of permutations are considered in such works
as [1, 6, 11].
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1.2. Motivation from Representation Theory

To understand why the Schur coefficients of cycG are so interesting, we must
recall the representation-theoretical significance of the cycle index polynomial.
For any subgroup G of Sn, let Sn/G be the set of left cosets of G in Sn, and let
C[Sn/G] be the C-vector space with basis Sn/G. Sn acts on the set Sn/G by left
multiplication, so C[Sn/G] becomes an Sn-module. It is well-known [23, I.7 Ex.
4, pg. 117] that the symmetric polynomial cycG is the Frobenius characteristic
of this module. In other words, the coefficient c(G,λ) of sλ in cycG is the
multiplicity of the irreducible module indexed by λ in C[Sn/G].

More generally, suppose Sn acts on any finite set X. The Sn-module C[X]
is a direct sum of submodules C[Y ] corresponding to the orbits Y of the action.
Each submodule C[Y ] is isomorphic to C[Sn/G], where G is the stabilizer of any
point in Y . Thus, we can find the character of an arbitrary linear representation
arising from a group action of Sn if we know all the coefficients c(G,λ) of the
relevant stabilizer subgroups G.

On one hand, for any specific subgroup G, the Schur coefficients can be
found algebraically by taking the inner product of the character of C[Sn/G]
with irreducible characters. Alternatively, we can pass from the known mono-
mial expansion or power-sum expansion of cycG to the Schur expansion by
multiplying by the appropriate transition matrix (see [25, §6.2] for examples of
computations using this technique). On the other hand, the required transition
matrices (the inverse Kostka matrix in the case of the monomial expansion, or
the character table of Sn in the case of the power-sum expansion) both have
coefficients of mixed sign. So the resulting algebraic formulas for the Schur co-
efficients are complicated combinations of positive and negative objects, which
are not manifestly positive (or even integral, if we start with the power-sum
expansion, which involves division by |G|). Thus, these algebraic solutions are
not satisfactory from the combinatorial viewpoint. Here we are asking for bijec-
tive proofs that the Schur coefficients count explicitly identifiable tableau-like
structures. This combinatorial question is unsolved for general G, although the
case of Young subgroups is treated in many representation theory textbooks
(see, e.g., [28, §2.11]). In that case, the Schur coefficients are the famous Kostka
numbers, which count semistandard tableaux of a given shape and content.

The Foulkes Conjecture can be phrased in terms of the coefficients c(G,λ).
Let Xa,b be the set of set partitions of {1, 2, . . . , ab} into a blocks of size b. Sab
acts transitively on Xa,b in the obvious way; let Ga,b be the stabilizer subgroup
of a designated element of Xa,b. The Foulkes Conjecture states that if a ≤ b
then for all λ, c(Ga,b, λ) ≤ c(Gb,a, λ). Knowing combinatorial formulas for these
coefficients could help prove the inequality. The present authors found explicit
F -expansions for the cycle index polynomials cycGa,b

in [21].

1.3. Summary of New Results

The primary contributions of this paper are as follows. First, we describe
a method (called the standardization approach) that provides uniform bijec-
tive proofs for F -expansions of the form (1) for many choices of the subgroup
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G. When the collection C has the special form (2), we also obtain bijective
proofs of the Schur expansions with the aid of the Robinson–Schensted cor-
respondence. Standardization is a powerful and well-known construction for
studying quasisymmetric expansions that has been utilized in many papers in-
cluding [5, 11, 21, 29]. The novel issue pursued here is the delicate interaction
between the standardization map and equivalence classes of words induced by
the action of G.

We apply our standardization approach to analyze the alternating groups
An, Young subgroups of Sn, direct products of subgroups, conjugate subgroups,
and all subgroups of Sn for n ≤ 5 (among other examples). The approach
succeeds for many but not all subgroups G. Another major contribution is a
complete solution of the problem for the subgroups G = 〈(1, 2, . . . , p)〉 ≤ Sn,
where p is any odd prime (Theorems 22 and 24). This analysis reveals an
unexpected connection between the standardization process and the existence
of perfect matchings in a certain quotient of a hypercube graph.

1.4. Outline of Paper

The rest of this paper is structured as follows. §2 presents the necessary
background material. §3 recalls the sorting and standardization maps, intro-
duces the standardization approach, and illustrates the approach by finding
F -expansions for G = {idn}, G = Sn, and G = An. §4 studies subgroups
G that are direct products or conjugates of subgroups that have already been
solved. We deduce formulas for the cycle index polynomials of Young subgroups
and explain what to do when a subgroup G of Sn is embedded in a larger sym-
metric group. The cyclic subgroup G = 〈(1, 2, 3, 4)〉 of Sn and an 8-element
dihedral subgroup D of Sn provide interesting examples of the strengths and
limitations of our approach. §5 shows how to pass from the F -expansion to the
Schur expansion when (2) holds. §6 uses the standardization approach to ana-
lyze the cyclic subgroup 〈(1, 2, . . . , p)〉 of Sn where p is an odd prime. Finally,
§7 contains some further results and conjectures based on computer-generated
data, including an analysis of all subgroups of Sn for n ≤ 5.

2. Background

We assume readers are familiar with basic facts and notation regarding per-
mutations, integer partitions, and symmetric polynomials, which can be found
in references such as [20, 28].

2.1. Cycle Index Polynomials

For each positive integer n, let [n] = {1, 2, . . . , n}. Let Sn be the symmetric
group on n symbols, which is the group of all bijections g : [n] → [n] under
the operation of composition of functions. Each g ∈ Sn can be factored into
a product of disjoint cycles. Define the cycle type of g, denoted type(g), to
be the integer partition of n obtained by listing the lengths of all the cycles
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of g, including any 1-cycles, in weakly decreasing order. For example, g =
(1, 2, 3, 9)(5, 7)(6, 8)(4) ∈ S9 has type(g) = (4, 2, 2, 1).

Given positive integers k and m, the kth power-sum symmetric polynomial
in m variables is pk = pk(x1, . . . , xm) = xk1 + xk2 + · · · + xkm. For an integer
partition µ = (µ1, µ2, . . . , µs), define pµ = pµ1

pµ2
· · · pµs

. Given any subgroup
G of Sn, define the cycle index of G to be the symmetric polynomial

cycG(x1, . . . , xm) =
1

|G|
∑
g∈G

ptype(g)(x1, . . . , xm). (3)

For example, the cyclic subgroup G = 〈(1, 2, 3, 4)〉 ⊆ S4 has

cycG =
1

4
(p(1,1,1,1) + 2p(4) + p(2,2)).

2.2. Colorings with Symmetries

Fix positive integers m and n. A coloring of the set [n] using m available
colors is a function w : [n] → [m]. We identify the function w with the word
w1w2 · · ·wn ∈ [m]n, where wi = w(i) ∈ [m] is the color assigned to position i.
The weight of w is wt(w) = xw1

xw2
· · ·xwn

. Let W = [m]n be the set of all
weighted colorings. One readily checks that∑
w∈W

wt(w) = (x1 + · · ·+ xm)n = p(1n)(x1, . . . , xm) = cyc{idn}(x1, . . . , xm),

where {idn} = {(1)(2) · · · (n)} is the identity subgroup of Sn.
Now suppose G is a given subgroup of Sn. The group G acts on the set W

via the rule g ? w = w ◦ g−1 for g ∈ G and w ∈ W . This action decomposes
W into a disjoint union of orbits. For w ∈ W , let [w]G = {g ? w : g ∈ G} be
the orbit of w under G. Intuitively, the orbit [w]G consists of all colorings that
get identified with w when the symmetries in G are taken into account. Each
coloring in the orbit of w is obtained from w by rearranging positions (inputs to
the function w) using one of the allowed symmetries in G. This rearrangement
does not change the multiset of colors used, so wt(w) = wt(v) for all v ∈ [w]G.
Thus we can define the weight of an orbit by wt([w]G) = wt(w) for all w ∈W .

For example, suppose m = n = 4 and G = 〈(1, 2, 3, 4)〉. The orbit [1312]G =
{1312, 3121, 1213, 2131} has size 4 and weight x21x2x3, and the orbit [2424]G =
{2424, 4242} has size 2 and weight x22x

2
4. Since G acts by cyclically shifting po-

sitions, we can think of each orbit [w]G as a 4-bead necklace, where all rotations
of a given necklace are considered the same.

Returning to the general case, let W/G = {[w]G : w ∈ W} be the set of
all orbits of the action of G on W . The following celebrated theorem of Pólya
provides the expansion of the cycle index polynomial into individual monomials.
This theorem says that cycG is the generating function for the weighted set of
colorings W/G, where colorings related by symmetries in G have been identified.
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Theorem 1 (Pólya [26, 27]). For any subgroup G of Sn and all integers m > 0,

cycG(x1, . . . , xm) =
∑

[w]G∈[m]n/G

wt([w]G). (4)

For a proof, see [25, Theorem 6.1] or [20, §7.16].

2.3. Fundamental Quasisymmetric Polynomials

Given any subset S of [n−1], let Wn,S be the set of all words w = w1w2 · · ·wn
in [m]n such that w1 ≤ w2 ≤ · · · ≤ wn and for all j ∈ S, wj < wj+1. So Wn,S

is the set of weakly increasing words in W that have strict increases at all the
positions in S (and perhaps elsewhere). Gessel’s fundamental quasisymmetric
polynomial indexed by n and S is defined to be

Fn,S(x1, . . . , xm) =
∑

w∈Wn,S

wt(w). (5)

For example, taking m = n = 4, W4,{1,3} = {1223, 1224, 1334, 2334, 1234} and

F4,{1,3}(x1, x2, x3, x4) = x1x
2
2x3 + x1x

2
2x4 + x1x

2
3x4 + x2x

2
3x4 + x1x2x3x4.

Some authors use different notation for Fn,S . In particular, these polynomials
are often indexed by compositions of n rather than pairs (n, S) with S ⊆ [n−1].

In applications, the set S indexing Fn,S is often the inverse descent set of a
permutation. For any s ∈ Sn written as a word s1s2 · · · sn, the descent set of s is
Des(s) = {i < n : si > si+1}, which is a subset of [n−1]. The inverse descent set
of s ∈ Sn is IDes(s) = Des(s−1), where s−1 is the inverse of s in the group Sn.
Equivalently, one readily checks that IDes(s) is the set of all i < n such that i+1
appears to the left of i in the word s1s2 · · · sn. For example, s = 435612 ∈ S6

has Des(s) = {1, 4}, s−1 = 562134, and IDes(s) = Des(s−1) = {2, 3}.
We now recall the combinatorial rule for the F -expansion of the product

of fundamental quasisymmetric polynomials [22, p. 35]. Suppose s(i) ∈ Sni

for 1 ≤ i ≤ d. Let N =
∑
i ni, Ni =

∑
j<i nj , and let s(i) be the word

obtained from s(i) by adding Ni to each letter. A permutation u ∈ SN is called
a shuffle of s(1), . . . , s(d) iff all of the words s(i) appear as subsequences of the
word u = u1u2 · · ·uN . For example, u = 53614782 is a shuffle of s(1) = 312,
s(2) = 231, and s(3) = 12; here s(1) = 312, s(2) = 564, and s(3) = 78.

Proposition 2. With the above terminology,

d∏
i=1

Fni,Des(si)(x1, . . . , xm) =
∑

u∈Sn: u is a shuffle
of s1, . . . , sd

FN,Des(u)(x1, . . . , xm). (6)
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2.4. Schur Symmetric Polynomials

Next we recall two combinatorial definitions of the Schur symmetric polyno-
mials. Let Par(n) be the set of integer partitions of n. Given λ = (λ1, . . . , λs) in
Par(n), the diagram of λ (in English notation) is an array of unit cells with λi
left-justified cells in the ith row from the top. A semistandard (Young) tableau
T of shape λ using the alphabet [m] is a filling of the cells in the diagram of λ
with values in [m] such that the entries in each row weakly increase from left to
right, and the entries in each column strictly increase from top to bottom. The
weight of such a tableau T is wt(T ) = xe11 · · ·xemm , where ej is the number of
occurrences of the symbol j in T . We write SSYTm(λ) for the set of semistan-
dard tableaux of shape λ with entries in [m]. The Schur symmetric polynomial
indexed by λ in m variables is

sλ(x1, . . . , xm) =
∑

T∈SSYTm(λ)

wt(T ).

Schur polynomials have a nice expansion in terms of the fundamental qua-
sisymmetric polynomials. Suppose λ is a partition of n. A standard tableau U
of shape λ is a tableau in SSYTm(λ) with weight x1x2 · · ·xn; this means that
the numbers 1, 2, . . . , n appear once each in U . The descent set of U is the set
of i < n such that i+ 1 appears in U in a lower row than i. Let SYT(λ) be the
set of all standard tableaux of shape λ. The following formula of Gessel [9] can
be proved bijectively by standardizing reading words of semistandard tableaux
(see [20, Thm. 12.99]):

sλ(x1, . . . , xm) =
∑

U∈SYT(λ)

Fn,Des(U)(x1, . . . , xm). (7)

For example, given the partition λ = (3, 2) ∈ Par(5), we compute

SYT(λ) =

{
1 2 3
4 5 ,

1 2 4
3 5 ,

1 2 5
3 4 ,

1 3 4
2 5 ,

1 3 5
2 4

}
;

s(3,2) = F5,{3} + F5,{2,4} + F5,{2} + F5,{1,4} + F5,{1,3}.

3. The Standardization Approach

This section describes the standardization approach, which is the main tool
we use to obtain bijective proofs of the formulas (1) for various groups G.

3.1. Sorting and Standardization

Fix positive integers m and n, and let W = [m]n be the set of words of
length n using the alphabet [m]. We recall the definitions of two maps on
W called sorting and standardization. Given a word w ∈ W , sort(w) is the
word obtained by sorting the letters of w into weakly increasing order. Next
we define the standardization map stdz : W → Sn. To standardize a word
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w ∈ W containing n1 ones, n2 twos, etc., renumber the n1 ones in w, from left
to right, with the symbols 1, 2, . . . , n1. Then renumber the n2 twos originally
in w, from left to right, with the symbols n1 + 1, n1 + 2, . . . , n1 + n2. Continue
similarly; in general, the ni copies of i in w get renumbered from left to right
with the symbols n1 + · · ·+ ni−1 + 1, n1 + · · ·+ ni−1 + 2, . . . , n1 + · · ·+ ni. For
example, if m = n = 9 and w = 311421223 ∈W , then sort(w) = 111222334 and
stdz(w) = 712943568 ∈ S9.

For any s ∈ Sn, let U(s) = {w ∈W : stdz(w) = s} be the set of all words in
W that standardize to s. For example, U(4213) = {3212, 4212, 4313, 4323, 4213}.
Shrinking the domain and codomain of the sorting function gives a restricted
map sorts : U(s)→Wn,IDes(s) that is easily seen to be a weight-preserving bijec-
tion. The two-sided inverse of sorts is the map unsorts : Wn,IDes(s) → U(s) that
sends v ∈Wn,IDes(s) to vs1vs2 · · · vsn . In other words, unsorts replaces each sym-
bol j in the word s by vj . For example, if s = 712943568 (so IDes(s) = {3, 6, 8})
and v = 233444567 ∈ W9,{3,6,8}, then unsorts(v) = 523743446 ∈ U(s). We can
now restate (5) as follows.

Proposition 3. For all s ∈ Sn,∑
w∈U(s)

wt(w) = Fn,IDes(s)(x1, . . . , xm). (8)

3.2. The Standardization Approach

For each s ∈ Sn, Proposition 3 gives a bijective proof that Fn,IDes(s) is the
generating function for the weighted set U(s). More generally, for any C ⊆ Sn,
define

U(C) = {w ∈W : stdz(w) ∈ C} =
⋃
s∈C

U(s).

Since U(C) is the disjoint union of the sets U(s) for s ∈ C,∑
w∈U(C)

wt(w) =
∑
s∈C

Fn,IDes(s)(x1, . . . , xm). (9)

Combining the individual bijections from Proposition 3, we obtain a bijective
proof of this formula. Specifically, the weight-preserving bijection sends w ∈
U(C) to the pair (stdz(w), sort(w)), where s = stdz(w) is in C and v = sort(w)
is in Wn,IDes(s). The inverse bijection sends (s, v) with s ∈ C and v ∈Wn,IDes(s)

to unsorts(v) ∈ U(C).
The next theorem formally states the standardization approach for finding

F -expansions of cycle index polynomials.

Theorem 4. Let G be a subgroup of Sn. If there exists C ⊆ Sn such that

U(C) intersects every orbit [z]G ∈W/G in exactly one point, (10)

then cycG =
∑
s∈C Fn,IDes(s) holds via a bijective proof.
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Proof. Recall that the weight of an orbit [z]G is the weight of any representative
of this orbit. The assumption (10) means that U(C) is a system of distinct
representatives for all the orbits. Now using (4) and (9), it follows that

cycG =
∑

[z]G∈W/G

wt([z]G) =
∑

w∈U(C)

wt(w) =
∑
s∈C

Fn,IDes(s).

The bijection acts on an orbit [z]G by first finding the unique representative
w ∈ [z]G ∩ U(C), then mapping [z]G to (stdz(w), sort(w)). The inverse map
sends (s, v) to [unsorts(v)]G.

Definition 5. Given a subgroup G of Sn, we say that the standardization
approach succeeds for G iff there exists C ⊆ Sn satisfying (10). We say the
standardization approach fully succeeds iff there exists a collection D of subsets
of [n− 1] such that C = {s ∈ Sn : Des(s) ∈ D} satisfies (10).

To illustrate this terminology, consider the identity subgroup G = {idn}.
One readily sees that (10) holds for C = Sn, since U(C) = W and every orbit
of W/G consists of a single word. We can take D to be the collection of all
subsets of [n−1] here, so the standardization approach fully succeeds for {idn}.
Theorem 4 gives a bijective proof of the expansion

h(1n) = p(1n) = cyc{idn} =
∑
s∈Sn

Fn,IDes(s)(x1, . . . , xm).

As another simple example, consider the subgroup G = Sn. One readily
checks that (10) holds for C = {idn}; the key point is that each orbit in W/Sn
contains exactly one weakly increasing word. So we have a bijective proof that

cycSn
(x1, . . . , xm) = Fn,∅(x1, . . . , xm) = hn(x1, . . . , xm). (11)

We may take D = {∅} here to see that the standardization approach fully
succeeds for G = Sn. This example is generalized to the case of Young subgroups
of Sn in §4.2.

3.3. Analysis of the Alternating Group

For s = s1s2 · · · sn ∈ Sn, an inversion of s is a pair (i, j) with 1 ≤ i < j ≤ n
and si > sj . Let inv(s) be the number of inversions of s, and define sgn(s) =
(−1)inv(s). The alternating group on [n] is An = {s ∈ Sn : sgn(s) = +1},
which is a normal subgroup of Sn. For example, s = 42513 has inv(s) = 6 and
sgn(s) = +1, so s ∈ A5. The next result shows that when computing cycAn

, the
standardization approach fully succeeds for n mod 4 ∈ {2, 3}, but the approach
does not succeed for n mod 4 ∈ {0, 1}. Fortunately, a modified bijection can be
found in the latter case.
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Theorem 6. For all integers n such that n mod 4 ∈ {2, 3}, the standardization
approach bijectively proves that

cycAn
(x1, . . . , xm) = Fn,∅(x1, . . . , xm) + Fn,[n−1](x1, . . . , xm)

=
∑

s∈Sn: Des(s)∈{∅,[n−1]}

Fn,IDes(s)(x1, . . . , xm).

For all n > 1 with n mod 4 ∈ {0, 1}, the same formula holds via a different
bijection.

Proof. Let r ∈ Sn be the reverse permutation n, n − 1, . . . , 3, 2, 1; note that
inv(r) =

(
n
2

)
. First assume n mod 4 ∈ {2, 3}, which holds iff

(
n
2

)
mod 2 = 1 iff

sgn(r) = −1. We show that (10) holds if we take C = {idn, r} ⊆ Sn, which
has the form (2) for D = {∅, [n − 1]}. For any word w ∈ W , w ∈ U(idn) iff
stdz(w) = idn iff w is a weakly increasing word, whereas w ∈ U(r) iff stdz(w) = r
iff w is a strictly decreasing word. So

U(C) = {w ∈W : w is weakly increasing or strictly decreasing}.

To check (10), consider an arbitrary orbit [z]An
where z ∈W . Case 1: z contains

a repeated letter, say zi = zj with i 6= j. We claim that there exists g ∈ An such
that g ? z = sort(z), which is weakly increasing. There certainly exists h ∈ Sn
with h ? z = sort(z). If h is in An, choose g = h. If h is not in An, choose
g = h ◦ (i, j), which is in An since sgn(g) = sgn(h) sgn((i, j)) = (−1)2 = +1.
Because zi = zj , we have g ? z = h ? ((i, j) ? z) = h ? z = sort(z), as needed.
Now we know that the orbit [z]An

contains the weakly increasing word sort(z),
which is clearly the only weakly increasing word in this orbit. Also, every word
in this orbit is a rearrangement of z, which has a repeated letter, so there is no
strictly decreasing word in this orbit. Thus (10) holds in Case 1.

Case 2: All letters of z are distinct. Let z+ = sort(z), and let z− be the
reversal of z+. We claim exactly one of z+ and z− is in the An-orbit of z.
This will suffice to verify (10), since z+ is the only weakly increasing word that
might belong to this orbit, and z− is the only strictly decreasing word that
might belong to this orbit. Because the letters of z are distinct, there exists a
unique h ∈ Sn such that h ? z = z+. Since r ? z+ = z−, r ◦ h is the unique
permutation in Sn sending z to z−. Since sgn(r) = −1, exactly one of h and
r ◦ h is in An. Thus, exactly one of z+ and z− is in [z]An

, as claimed.
Now suppose n mod 4 ∈ {0, 1} and n > 1. The argument in Case 2 fails for

such an n, since sgn(h) = sgn(r ◦ h), so z+ and z− are either both in [z]An or
both not in [z]An . But the following modification works instead. Consider the
transposition (1, 2) ∈ Sn, which is 2134 · · ·n in word notation and has sign −1.
Let U∗((1, 2)) be the set of w ∈ U((1, 2)) where all letters of w are distinct.
Equivalently, U∗((1, 2)) = {w ∈ [m]n : w2 < w1 < w3 < w4 < · · · < wn}. By
repeating the proof in Case 1 and Case 2 above, with r replaced by (1, 2) and
z− replaced by (1, 2) ? z+, one sees that:

U(idn) ∪ U∗((1, 2)) intersects every orbit [z]An
in exactly one point. (12)

10



On one hand, Proposition 3 proves bijectively that
∑
w∈U(idn)

wt(w) = Fn,∅. On

the other hand, by sorting the letters of w ∈ U∗((1, 2)), we obtain a bijective
proof that∑

w∈U∗((1,2))

wt(w) =
∑

1≤i1<i2<···<in≤m

xi1xi2 · · ·xin = Fn,[n−1](x1, . . . , xm).

Now (12) implies that cycAn
= Fn,∅ + Fn,[n−1]. The bijection acts as fol-

lows. Given z ∈ W , let w be the unique representative of [z]An
in U(idn) ∪

U∗((1, 2)). If w ∈ U(idn), map [z]An
to (idn, w). If w ∈ U∗((1, 2)), map [z]An

to ((1, 2), sort(w)).

For s ∈ Sn, IDes(s) = ∅ iff s = idn, whereas IDes(s) = [n − 1] iff s = r
(the reversal of idn). Now that we know cycAn

= Fn,∅ + Fn,[n−1] for all n > 1,
it follows that C = {idn, r} is the only subset of Sn that could possibly satisfy
condition (10) for G = An. But we saw in the proof above that this set C
does not satisfy the condition when n mod 4 ∈ {0, 1}. This proves that the
standardization approach does not succeed for these choices of G. Nevertheless,
the underlying algebraic formula still holds, and in this case we were able to
find a bijective proof by a modification of the standardization approach.

Remark 7. There is an easy representation-theoretic proof of the formula
cycAn

= Fn,∅+Fn,[n−1] = s(n)+s(1n), based on the fact that cycAn
is the Frobe-

nius characteristic of the Sn-module C[Sn/An]. This two-dimensional module
is the direct sum of one copy of the trivial representation and one copy of the
sign representation, as one readily checks.

4. Direct Products, Conjugate Subgroups, and Compressed Words

This section combines the standardization approach with some general con-
structions that lead to formulas for cycG for more subgroups G.

4.1. Solution for Direct Products

We begin by studying the cycle index polynomial for certain direct products
of subgroups. Throughout this subsection, we use the following notation. Sup-
pose Gi is a subgroup of Sni for 1 ≤ i ≤ d. Define N = n1 + n2 + · · ·+ nd and
Ni =

∑
j<i nj for 1 ≤ i ≤ d. Let G′i be the isomorphic copy of Gi in the group

SN that permutes the symbols {1 + Ni, 2 + Ni, . . . , ni + Ni} in the same way
that Gi permutes the symbols {1, 2, . . . , ni}. Let

G = {g′1 ◦ g′2 ◦ · · · ◦ g′d : g′i ∈ G′i for 1 ≤ i ≤ d}.

G is a subgroup of SN , namely the (internal) direct product G′1×G′2×· · ·×G′d,
which is isomorphic to the (external) direct product G1×G2×· · ·×Gd. For any
word or permutation v ∈ [m]N , define the ith block of v to be the subword v(i) =
v1+Ni

v2+Ni
· · · vni+Ni

. Note that v is the concatenation of v(1), v(2), . . . , v(d),
and stdz(v(i)) is a permutation in Sni

for 1 ≤ i ≤ d.
The following proposition is readily proved from (4).
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Proposition 8. With the above notation, cycG =
∏d
i=1 cycGi

holds by a bijec-
tive proof. The weight-preserving bijection sends [w]G ∈ [m]N/G to

([w(1)]G1 , [w
(2)]G2 , . . . , [w

(d)]Gd
) ∈ [m]n1/G1 × [m]n2/G2 × · · · × [m]nd/Gd.

To prove Theorem 10, we need a bijective version of the multiplication
rule (6) for fundamental quasisymmetric polynomials. The following obser-
vation plays a key role in the proof: if v ∈ [m]N and s = stdz(v) ∈ SN , then
stdz(v(i)) = stdz(s(i)) for 1 ≤ i ≤ d. In other words, standardizing the ith

block of consecutive symbols in v gives the same result as first standardizing
all of v, and then standardizing the ith block of the resulting permutation.
For example, suppose N = 8, n1 = 5, n2 = 3, and v = 34132414. Then
s = 46153728, v(1) = 34132, s(1) = 46153, stdz(v(1)) = 35142 = stdz(s(1)),
v(2) = 414, s(2) = 728, and stdz(v(2)) = 213 = stdz(s(2)).

The following proposition is readily proved from (8).

Proposition 9. For all t(1) ∈ Sn1 , t(2) ∈ Sn2 , . . . , t(d) ∈ Snd
,

d∏
i=1

Fni,IDes(t(i))(x1, . . . , xm) =
∑

s∈SN : stdz(s(i))=t(i)

for 1≤i≤d

FN,IDes(s)(x1, . . . , xm) (13)

holds by a bijective proof. The bijection sends (w(1), w(2), . . . , w(d)) ∈ U(t(1))×
· · · × U(t(d)) to the concatenation w(1)w(2) · · ·w(d).

We remark that (13) can be deduced algebraically from (6) by letting t(i) =
[s(i)]−1, but we need the bijective version.

Theorem 10. For 1 ≤ i ≤ d, suppose Gi is a subgroup of Sni and Ci is a subset
of Sni such that

cycGi
(x1, . . . , xm) =

∑
t(i)∈Ci

Fni,IDes(t(i))(x1, . . . , xm). (14)

Let C = {s ∈ SN : stdz(s(i)) ∈ Ci for 1 ≤ i ≤ d}.
(a) The subgroup G = G′1 × · · · ×G′d in SN satisfies

cycG(x1, . . . , xm) =
∑
s∈C

FN,IDes(s)(x1, . . . , xm). (15)

(b) Bijective proofs of (14) for 1 ≤ i ≤ d combine to give a bijective proof
of (15). (c) If the standardization approach succeeds for each Gi, then the
standardization approach succeeds for G. (d) If the standardization approach
fully succeeds for each Gi, then the standardization approach fully succeeds for
G.

Proof. Parts (a) and (b) follow easily from Propositions 8 and 9.
For (c), assume that the standardization approach succeeds for each Gi using

the collection Ci. We prove that the standardization approach also succeeds for
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G using the collection C. Given any orbit [z]G ∈ [m]N , we must show there
exists a unique w in this orbit such that stdz(w) ∈ C. Now, for any word
w ∈ [m]N , the definition of G shows that the concatenation map restricts to
a bijection from [z(1)]G1

× · · · × [z(d)]Gd
to [z]G. So for every w ∈ [z]G, there

exist unique u(i) ∈ [z(i)]Gi
such that w is the concatenation of u(1), . . . , u(d).

Now, s = stdz(w) ∈ C iff stdz(s(i)) ∈ Ci for all i iff stdz(w(i)) ∈ Ci for all i iff
stdz(u(i)) ∈ Ci for all i. By assumption, for each i, there exists a unique v(i) ∈
[z(i)]Gi

that standardizes to something in Ci. We conclude that there exists a
unique v ∈ [z]G that standardizes to something in C, namely the concatenation
of v(1), . . . , v(d). So (10) holds for G and C.

For (d), assume that the standardization approach fully succeeds for each
Gi. For 1 ≤ i ≤ d, let Di be a collection of subsets of [ni−1] such that (14) holds
with Ci = {s ∈ Sni : Des(s) ∈ Di}. Define Xi = {Ni+1, Ni+2, . . . , Ni+ni−1}
for 1 ≤ i ≤ d, and let D′i be the collection of subsets of Xi obtained by adding
Ni to every element of every subset in Di. Define

D = {D ⊆ [N − 1] : D ∩Xi ∈ D′i for 1 ≤ i ≤ d}. (16)

We must prove C = {s ∈ SN : Des(s) ∈ D}. Given any s ∈ SN and i between
1 and d, one readily checks that Des(stdz(s(i))) ∈ Di iff Des(s) ∩ Xi ∈ D′i,
since standardizing a word with no repeated letters does not create or destroy
descents. So s ∈ C iff stdz(s(i)) ∈ Ci for all i ∈ [d] iff Des(stdz(s(i))) ∈ Di for all
i ∈ [d] iff Des(s) ∩Xi ∈ D′i for all i ∈ [d] iff Des(s) ∈ D.

4.2. Solution for Young Subgroups and Embedded Subgroups

In this subsection, we give two applications of Theorem 10. A Young sub-
group of SN is a subgroup of the form S′n1

× S′n2
× · · · × S′nd

, where we use the
notation from the beginning of §4.1. Since cycSni

= Fni,∅ by (11), Theorem 10

yields the following result (take Ci = {idni
} and Di = {∅} for all i).

Corollary 11. Given positive integers n1, n2, . . . , nd with sum N , let G be the
Young subgroup S′n1

× S′n2
· · · × S′nd

of SN . The standardization approach fully
succeeds for G, giving a bijective proof that

cycG(x1, . . . , xm) =
∑
s∈SN :

Des(s)⊆{n1,n1+n2,...,n1+···+nd−1}

FN,IDes(s)(x1, . . . , xm).

Remark 12. We know cycSni
= Fni,∅ = hni

, the complete homogeneous sym-

metric polynomial. Therefore, for G = S′n1
×· · ·×S′nd

, cycG = hn1
hn2
· · ·hnd

=
hµ where µ = sort(n1, n2, . . . , nd). Thus, Corollary 11 provides the F -expansions
of the symmetric polynomials hµ. We obtain another formula for these expan-
sions by combining (7) with the well-known identity hµ =

∑
λKλ,µsλ, where the

Kostka numbers Kλ,µ count semistandard tableaux of shape λ and content µ.
The Schur expansion of hµ can be proved combinatorially using the tableau in-
sertion algorithm (see, for instance, [20, §9.12]) or by representation-theoretical
arguments (see [28, §2.11]). In §5, we show how the standardization approach
leads to a bijective proof of this Schur expansion.
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For our second application of Theorem 10, suppose G is a subgroup of Sn and
N > n. SN contains an isomorphic copy of G, namely G∗ = G× S′1 × · · · × S′1,
where there areN−n factors isomorphic to S1 = {(1)}. So cycG∗ = cycG ·FN−n1,∅ ,
where F1,∅ = x1 + x2 + · · ·+ xm. Note that every one-letter word standardizes
to 1. Combining this remark with Theorem 10 immediately yields the following
result.

Corollary 13. Suppose G is a subgroup of Sn and C is a subset of Sn such that
cycG =

∑
s∈C Fn,IDes(s). For N ≥ n, let G∗ be G viewed as a subgroup of SN ,

and let C∗ = {s ∈ SN : stdz(s1 · · · sn) ∈ C}. Then cycG∗ =
∑
s∈C∗ FN,IDes(s).

Moreover, if the standardization approach succeeds (resp. fully succeeds) for G
and C, then the standardization approach succeeds (resp. fully succeeds) for G∗

and C∗.

4.3. Solution for Conjugate Subgroups

Given two subgroups G and H of Sn, recall that H is conjugate to G iff
there exists s ∈ Sn with H = sGs−1. The next theorem follows easily from the
fact that conjugate permutations have the same cycle type.

Theorem 14. For all subgroups G and H of Sn, if H is conjugate to G, then
cycH = cycG. Moreover, any bijective proof of the F -expansion or Schur expan-
sion of cycG induces a bijective proof of the same expansion for cycH .

For example, suppose H = sGs−1 and the bijection f for cycG comes from
the standardization approach using a collection C satisfying (10). The corre-
sponding bijection for cycH starts with an orbit [w]H ∈ [m]n/H, maps this
orbit to [w ◦ s]G, finds the unique word v ∈ [w ◦ s]G ∩ U(C), and returns the
answer (stdz(v), sort(v)).

4.4. Reduction to Compressed Words

If G is a subgroup of Sn for a small value of n, then it is possible to check
condition (10) of Theorem 4 by an exhaustive computer search. Our next result
shows that such a search only needs to check some of the orbits in [m]n/G.

Define a word w ∈ [m]n to be compressed iff for all j < k in [m], if k appears
in w then j appears in w. Given any word z ∈ [m]n, the compression of z
is the word c(z) ∈ [n]n defined as follows. Let the distinct letters appearing
in z be i1 < i2 < · · · < is, where s ≤ n since z has length n. Form c(z)
by replacing each occurrence of ij in z by j, for 1 ≤ j ≤ s. For example,
c(47726274) = 24413142. One easily checks that c(z) is a compressed word in
[n]n such that stdz(c(z)) = stdz(z). Moreover, for all g ∈ Sn and all z, z′ ∈ [m]n,
g?z = z′ implies g?c(z) = c(z′). So, for any subgroup G of Sn and any z ∈ [m]n,
[c(z)]G = {c(z′) : z′ ∈ [z]G}.

Theorem 15. Fix a subgroup G of Sn and a subset C of Sn. Suppose that for
every compressed word w ∈ [n]n, U(C) intersects the orbit [w]G in exactly one
point. Then (10) holds for G, C, and any m.
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Proof. Assume (10) fails for some orbit [z]G ∈ [m]n/G; we show that (10) also
fails for [w]G, where w is the compressed word c(z). On one hand, suppose
U(C) ∩ [z]G = ∅, which means stdz(g ? z) 6∈ C for all g ∈ G. Then for all
g ∈ G, stdz(g ? w) = stdz(g ? c(z)) = stdz(c(g ? z)) = stdz(g ? z) 6∈ C, so that
U(C) ∩ [w]G = ∅. On the other hand, suppose z1 = g1 ? z and z2 = g2 ? z
are two distinct words in [z]G such that stdz(z1), stdz(z2) ∈ C. Then w1 =
c(z1) = g1 ? w and w2 = c(z2) = g2 ? w are two distinct words in [w]G such that
stdz(w1), stdz(w2) ∈ C.

4.5. Analysis of 〈(1, 2, 3, 4)〉
Theorem 15, Corollary 13, and routine computer calculations yield the fol-

lowing result.

Proposition 16. For n ≥ 4, let G = 〈(1, 2, 3, 4)〉 ≤ Sn. Define

C1 = {1234, 1324, 1432, 2431, 3421, 4231} and

C2 = {1234, 1324, 3214, 4213, 4231, 4312}.

The standardization strategy bijectively proves

cycG =
∑

s∈Sn: stdz(s1s2s3s4)∈C1

Fn,IDes(s) =
∑

s∈Sn: stdz(s1s2s3s4)∈C2

Fn,IDes(s).

When n = 4, C1 and C2 are the only choices of C satisfying (10).

One readily checks that C1 and C2 do not have the form (2) for any choice
of D. Thus the standardization approach succeeds, but does not fully succeed,
for G = 〈(1, 2, 3, 4)〉. Nevertheless, there is an algebraic formula for cycG in-
volving a set C satisfying (2). Using Proposition 16 with n = 4, one verifies
by direct calculation that cycG =

∑
s∈S4:Des(s)∈{∅,{1,3}} F4,IDes(s). Corollary 13

now applies to give the following algebraic result.

Corollary 17. Let G be 〈(1, 2, 3, 4)〉 viewed as a subgroup of Sn for n ≥ 4.
Then

cycG =
∑
s∈Sn:

Des(s1s2s3s4)∈{∅,{1,3}}

Fn,IDes(s).

4.6. Analysis of the Dihedral Group of Order 8

Let G = 〈(1, 2, 3, 4)〉 = {1234, 2341, 3412, 4123}, and let D be the eight-
element dihedral group D = G ∪ {4321, 3214, 2143, 1432}. For each w ∈ [m]4,
[w]D = [w]G ∪ [4321 ? w]G, where 4321 ? w is the reversal of the word w. This
means that each D-orbit of w either coincides with the G-orbit of w or is the
union of two G-orbits of w. The same search process used to prove Proposi-
tion 16 establishes the following result.
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Proposition 18. For n ≥ 4, let D be the 8-element dihedral group viewed as
a subgroup of Sn. Define C1 = {1234, 1324, 2431}, C2 = {1234, 1324, 4213},
C3 = {1234, 3142, 2431}, and C4 = {1234, 3142, 4213}. For 1 ≤ k ≤ 4, the
standardization strategy bijectively proves

cycD =
∑

s∈Sn: stdz(s1s2s3s4)∈Ck

Fn,IDes(s).

For n = 4, the four sets Ck are the only choices of C satisfying (10).

Here too, none of the sets Ck have the form (2) for any choice of D. So
the standardization approach succeeds, but does not fully succeed, for the group
D. When n = 4, cycD = F4,∅ + F4,{2} + F4,{1,3}. Even algebraically, this
F -expansion cannot be written in the form

∑
s∈S4:Des(s)∈D Fn,IDes(s) for any D.

5. Schur Expansions

When the standardization approach fully succeeds for a given group G, we
can convert the F -expansion of cycG into a Schur expansion, as shown in the
next theorem.

Theorem 19. Suppose G is a subgroup of Sn and D is a collection of subsets
of [n− 1] such that

cycG(x1, . . . , xm) =
∑

s∈Sn: Des(s)∈D

Fn,IDes(s)(x1, . . . , xm). (17)

Then

cycG(x1, . . . , xm) =
∑

λ∈Par(n)

|{Q ∈ SYT(λ) : Des(Q) ∈ D}|sλ(x1, . . . , xm).

(18)
Moreover, any bijective proof of (17) induces a bijective proof of (18).

Proof. Given (s, v) with s ∈ Sn, Des(s) ∈ D, and v ∈ Wn,IDes(s), use the
Robinson–Schensted correspondence to convert s to a pair (P,Q) of standard
tableaux of the same shape λ. Map (s, v) to the triple (λ,Q, T ), where T is the
semistandard tableau of weight wt(v) obtained from P by replacing i in P by vi
for 1 ≤ i ≤ n. One readily checks that this defines a weight-preserving bijection
proving that the right sides of (17) and (18) are equal.

More generally, suppose we replace condition (2) by the following weaker
condition: for some collection Q of standard tableaux with n cells, C is the set
of s ∈ Sn such that the RSK recording tableau Q(s) lies in Q. By the same
bijective proof just given, we see that∑

s∈C
Fn,IDes(s) =

∑
Q∈Q

sshape(Q). (19)
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This offers us more chances to obtain Schur expansions of cycle index polyno-
mials by using the standardization approach. Unfortunately, one can check that
the sets C appearing in Propositions 16 and 18 do not satisfy the weaker con-
dition stated here. So this approach by itself is not powerful enough to provide
bijective proofs of the Schur expansions for every subgroup G.

Remark 20. We can use representation theory to see that for every subgroup
G of Sn, there is always an algebraic formula of the form (19) for cycG, although
we are not guaranteed a combinatorial or bijective proof of this formula. It suf-
fices to note that the left regular Sn-module C[Sn] has Frobenius characteristic∑
λ |SYT(λ)|sλ, and the module C[Sn/G] with Frobenius characteristic cycG

is a quotient module of C[Sn]. We leave it as an open question to find explicit
descriptions of the collections Q and bijective proofs of these Schur expansions
valid for general subgroups G.

6. Analysis of the Cyclic Groups 〈(1, 2, . . . , p)〉 for Prime p

This section studies the cycle index polynomials cycG when p is an odd
prime and G is the cyclic subgroup 〈(1, 2, . . . , p)〉 in Sp. We prove that the
standardization approach fully succeeds for these groups. The first key concept
is the notion of a circular descent set, which reduces the problem to finding
perfect matchings in a certain graph.

6.1. Circular Descent Sets

Given any word w ∈ [m]n, define the circular descent set CDes(w) =
{i ∈ [n] : wi > wi+1} where subscripts are reduced modulo n. In particu-
lar, n ∈ CDes(w) iff wn > w1. For example, CDes(144323) = {3, 4, 6} and
CDes(362451) = {2, 5}. For every word w of length n, Des(w) = CDes(w)\{n}.

Lemma 21. For all words w ∈ [m]n, Des(w) = Des(stdz(w)).

Proof. Suppose w = w1w2 · · ·wn ∈ [m]n standardizes to an element s = stdz(w)
in Sn given by s = s1s2 · · · sn; we prove Des(w) = Des(s). Fix i in the range
1 ≤ i < n. If i ∈ Des(w), then wi > wi+1, so standardizing relabels wi with
a larger symbol than the symbol used to relabel wi+1. Thus si > si+1, which
means i ∈ Des(s). If i 6∈ Des(w), then wi ≤ wi+1. In the case wi < wi+1, then
si < si+1 follows as before. In the case wi = wi+1, then si+1 = si + 1 since
standardization renumbers equal values in w from left to right (and i < n here).
So si < si+1 holds, and hence i 6∈ Des(s) in both cases.

The next theorem shows how circular descent sets can help us find collections
C and D satisfying (1) and (2). From now on, we identify a subset S of [n] with
the bit string b ∈ {0, 1}n such that i ∈ S iff bi = 1. In this notation, we
obtain Des(w) from CDes(w) by deleting the last bit. We also write {0, 1}p/G
for the set of orbits of binary words under the cyclic shifting action of G =
〈(1, 2, . . . , p)〉.
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Theorem 22. Let p be an odd prime, and let G = 〈(1, 2, . . . , p)〉 in Sp. Suppose
D ⊆ {0, 1}p−1 satisfies this condition:

For all b ∈ {0, 1}p there is a unique d ∈ D with d0 ∈ [b]G or d1 ∈ [b]G. (20)

Then for all positive integers m,

cycG(x1, . . . , xm) =
∑

s∈Sn: Des(s)∈D

Fn,IDes(s)(x1, . . . , xm),

so the standardization approach fully succeeds for G.

Proof. It suffices to check (10), taking C = {s ∈ Sn : Des(s) ∈ D}. Fix z ∈ [m]p,
and consider two cases. Case 1: z is a constant word, meaning that all letters
of z are equal. Then [z]G = {z} and stdz(z) = idp = 12 · · · p. In (20), take
b = 00 · · · 0 ∈ {0, 1}p, so that [b]G = {b}. We see that D must contain the bit
string d = 0 · · · 0 ∈ {0, 1}p−1, which encodes the empty set. Since ∅ belongs to
D, idp belongs to C, so [z]G ∩ U(C) consists of the single word z.

Case 2: z is not a constant word, so the orbit [z]G does not consist of z
alone. Since p is prime, this forces [z]G to contain p distinct words z(1), . . . , z(p),
which are the p different cyclic shifts of z. Let b = CDes(z) viewed as a bit
string in {0, 1}p, and let b(i) = CDes(z(i)) for 1 ≤ i ≤ p. Since cyclically shifting
z also cyclically shifts the locations of the circular descents in z, we see that
[b]G = {b(1), b(2), . . . , b(p)}. We claim b cannot be a constant bit string. For if
bi = 1 for all i, we would have z1 > z2 > · · · > zp > z1, which is impossible.
And if bi = 0 for all i, we would have z1 ≤ z2 ≤ · · · ≤ zp ≤ z1, which would
force z to be a constant word. Thus the p words b(1), . . . , b(p) are all distinct.

To finish, note that z(i) is in U(C) iff stdz(z(i)) is in C iff Des(stdz(z(i))) is
in D iff Des(z(i)) is in D iff b(i) with its last bit deleted is in D. By the assumed
condition (20), the final condition on b(i) holds for exactly one i between 1 and
p. Therefore, z(i) ∈ U(C) holds for exactly one i between 1 and p. This proves
that every G-orbit in [m]n intersects U(C) in exactly one point, as needed.

6.2. Reduction to Perfect Matching Problem

To find formulas for cycG(x1, . . . , xm) when G = 〈(1, 2, . . . , p)〉, we must still
find collections D ⊆ {0, 1}p−1 satisfying condition (20). This condition can be
reformulated in graph-theoretic terms, as follows. Let Gp be the graph with
vertex set V (Gp) = {0, 1}p/G and edge set

E(Gp) = {{[d0]G, [d1]G} : d ∈ {0, 1}p−1}.

We obtain Gp from the hypercube {0, 1}p by identifying all vertices that differ
by a cyclic shift. Note that Gp can have multiple edges between the same two
vertices, but there are no loop edges since [d0]G 6= [d1]G for all d. A subset D of
{0, 1}p−1 satisfies (20) iff the corresponding set of edges M = {{[d0]G, [d1]G} :
d ∈ D} is a perfect matching of Gp. Recall this means that every vertex of Gp is
the endpoint of exactly one edge in M .
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Figure 1: The graph G5.

As an example, Figure 1 shows the graph G5. We see by inspection of the
graph that G5 has five perfect matchings, corresponding to the following subsets
of {0, 1}4:

D1 = {0000, 0110, 1001, 1111} = {∅, {2, 3}, {1, 4}, {1, 2, 3, 4}};
D2 = {0000, 0011, 0101, 1111} = {∅, {3, 4}, {2, 4}, {1, 2, 3, 4}};
D3 = {0000, 1100, 0101, 1111} = {∅, {1, 2}, {2, 4}, {1, 2, 3, 4}};
D4 = {0000, 0011, 1010, 1111} = {∅, {3, 4}, {1, 3}, {1, 2, 3, 4}};
D5 = {0000, 1100, 1010, 1111} = {∅, {1, 2}, {1, 3}, {1, 2, 3, 4}}.

(21)

Applying Theorem 22 and Corollary 13, we deduce the following result.

Proposition 23. Let G = 〈(1, 2, 3, 4, 5)〉 viewed as a subgroup of Sn. For each
collection Dk shown in (21),

cycG(x1, . . . , xm) =
∑
s∈Sn:

Des(s1···s5)∈Dk

Fn,IDes(s)(x1, . . . , xm).

6.3. Construction of Perfect Matchings for Prime p

Kramer, Lastaria, and Salvi proved that for all odd n, the graph Gn has at
least one perfect matching [18]. (Those authors begin with the n-dimensional
binary de Bruijn graph, collapse vertices that differ by a cyclic shift, and ignore
edge directions. One readily checks that this produces the graph Gn, disregard-
ing multiple edges.) Their proof proceeds algorithmically, showing that any
non-perfect matching M of Gn can be enlarged by finding an M -augmenting
path.

In this section, we explicitly exhibit a particular perfect matching for Gp for
every odd prime p. This provides a formula for cyc〈(1,2,...,p)〉 like that given in
Proposition 23. In general, there are many such formulas, one for each perfect
matching of Gp. For instance, G7 has 6285 perfect matchings. For simplicity, in
what follows we identify all edges in Gp with the same endpoints, thus viewing
Gp as a simple graph. This affects the number of perfect matchings but not the
existence of a perfect matching.

There are three key ingredients in our construction. The first is to find a
perfect matching on a particular path in Gp connecting the vertices [00 · · · 0]G
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and [11 · · · 1]G. The second is to encode the remaining vertices of Gp as circular
compositions, as is done in [18]. The third is to group the vertices of Gp into
disjoint binary hypercubes of various dimensions. A perfect matching can then
be chosen independently on each such hypercube.

We begin by matching the vertices on the path from [00 · · · 0]G to [11 · · · 1]G.
For 0 ≤ a ≤ p, let va be the word consisting of a zeros followed by p − a ones.
For a odd, match [va]G with [va−1]G; equivalently, for a even, match [va]G with
[va+1]G. Define

G′p = Gp \ {[v0]G, [v
1]G, . . . , [v

p]G}.

For the second step, we encode the vertices of G′p as circular compositions.
Let Cp denote the set of integer compositions of p. That is,

Cp = {(c1, c2, . . . , c`) : ` > 0, c1, . . . , c` > 0, c1 + · · ·+ c` = p}.

Let C∗p be the set of equivalence classes of Cp under cyclic rotation of the parts.
For example, using square brackets to denote equivalence classes, we have

C∗5 = {{11111}, {1112, 1121, 1211, 2111}, {122, 212, 122}, {113, 131, 311},
{23, 32}, {14, 41}, {5}} = {[11111], [1112], [122], [113], [23], [14], [5]}.

Because p is prime, all ` cyclic rotations of any composition c = (c1, c2, . . . , c`)
of p must be distinct.

We define a map φ : V (G′p)→ C∗p as follows. Given v = v1v2 · · · vp ∈ {0, 1}p,
let i1 < i2 < · · · < ik be the indices for which vj = 1. Note that k ≥ 1 since
[00 · · · 0]G 6∈ V (G′p). Define

φ([v]G) = [(i2 − i1, i3 − i2, . . . , ik − ik−1, (p+ i1)− ik)].

We can compute φ([v]G) by replacing each string of b 0s followed cyclically by a
1 with the part b+ 1. For example, φ([0011000]G) = [16] and φ([1000101]G) =
[421]. One readily checks that φ is well-defined and injective.

Let G∗p be the graph with vertex set {φ([v]G) : v ∈ G′p} and edge set
{{φ([v]G), φ([w]G)} : {[v]G, [w]G} ∈ E(G′p)}. One readily checks that {[c], [d]} is
an edge in G∗p iff d is obtained from c by combining two consecutive parts of c
(reading parts cyclically) or splitting one part of c into two parts. Moreover, φ
is a graph isomorphism between G′p and G∗p . For example, Figure 2 illustrates
the graphs G′7 and G∗7 .

Theorem 24. For every odd prime p, G∗p has a perfect matching.

Proof. Let c = (c1, c2, . . . , c`) be a circular composition with [c] ∈ V (G∗p), so c
has at least two parts greater than 1. We match [c] to another vertex by applying
one of the following moves. A split move replaces a certain part M > 1 in [c]
by successive parts 1 and M − 1. A combine move replaces successive parts 1
and M in [c] by 1 + M . We split if the number of parts of size 1 immediately
preceding the part M (taking wraparound into account) is even and combine

20
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Figure 2: The graphs G′7 and G∗7 . The solid edges form the perfect matching described in the
proof of Theorem 24.

if this number is odd. The tricky point is determining which part of [c] should
play the role of M .

Our approach is to identify a hypercube HC([c]) in G∗p having [c] as a vertex.
We partially order the set of circular compositions by setting [c1, . . . , c`] ≺
[d1, . . . , d`′ ] if and only if ` > `′. Let M = max(c1, c2, . . . , c`), and let A =
{a1 < a2 < · · · < ap} be the indices for which cai = M . Note that M > 1
since [11 · · · 1] 6∈ V (G∗p). For each ai ∈ A, let yi be the number of parts of size 1
immediately preceding cai (taking wraparound into account). We now consider
cases that correspond to whether [c] is the minimum vertex of HC([c]) with
respect to the partial order ≺.

Case I: At least one yi is odd.
Let Aodd = {ai ∈ A : yi is odd} and k = |Aodd|. For each yi ∈ Aodd, we could
choose to replace the cyclically consecutive parts cai−1 = 1 and cai = M by a
single part 1 +M . Treating all of these k choices independently, we obtain the
2k vertices of a k-dimensional hypercube denoted HC([c]), which appears as a
subgraph of G∗p . Note that all circular compositions arising from c in this way
still have at least two parts greater than 1.

Here are three examples of this construction. (1) If c = 315, then HC([c])
is the 1-dimensional hypercube with vertices [315] and [36]. (2) If c = 144,
then HC([c]) is the 1-dimensional hypercube with vertices [144] and [54]. (3) If
c = 143111424, then M = 4, A = {2, 7, 9}, y1 = 1, y2 = 3, and y3 = 0, so
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Aodd = {2, 7}. We could combine the parts c1 = 1 and c2 = 4 into a single part
5. We could also combine the parts c6 = 1 and c7 = 4 into a single part 5. Thus,
HC([c]) is the 2-dimensional hypercube with vertices [143111424], [14311524],
[53111424], and [5311524].

There are many possible perfect matchings on a given k-dimensional hyper-
cube. To be completely definite, we match as follows. Given c satisfying Case I,
let ĉ be the lexicographically greatest representative of the maximum vertex in
HC([c]) (computed relative to ≺). Since p is prime and M > 1, ĉ determines
a unique representative for every vertex in HC([c]), by splitting any subset of
the parts equal to 1 +M in ĉ that are preceded by an even number of 1s. Now,
we obtain a perfect matching of HC([c]) by always splitting or combining at the
first M + 1 occurring in ĉ. In example (3) above, ĉ = 5311524, so the matching
pairs [5311524] with [14311524] and [53111424] with [143111424].

Case II: All of the yi are even.
In this case, [c] is part of a k-dimensional hypercube whose vertices differ from
[c] by both combinations and splits. We first must address the possibility that
M = 2. In this event, each 2 must have an even number of 1s preceding it;
otherwise we would be in Case I. But since all parts of c are 1 or 2, this implies
that p is even, which is a contradiction. So we may assume from now on that
M > 2 and hence m = M − 1 > 1.

The vertex [c] now under consideration in Case II is some non-minimal vertex
in one of the hypercubes HC([c′]) previously constructed in Case I. Thus the
perfect matching already found for HC([c′]) suffices to match [c], provided we
can determine [c′] uniquely from [c]. Let B = {b1 < b2 < · · · < bq} be the indices
for which cbj = m, and let zj be the number of 1s immediately preceding cbj
(taking wraparound into account). Let Bodd = {bj ∈ B : zj is odd}. We
construct a hypercube HC([c]) containing [c] such that HC([c]) has dimension
|A| + |Bodd|. We obtain the vertices of HC([c]) by independently choosing to
split at any of the indices in A or to combine at any of the indices in Bodd. One
readily checks that HC([c]) = HC([c′]), where [c′] is the minimal element of this
hypercube relative to ≺. Thus, [c] has already been matched via the matching
on HC([c′]) described in Case I.

Example 25. Let c = 11142453. Here M = 5 appears one time in c imme-
diately preceded by an even number of 1s, so we are in Case II. Here m = 4
also appears once in c preceded by an odd number of 1s, so HC([c]) will be
2-dimensional. To figure out whether we should split the 5 or combine the 14 in
order to find the vertex matched to [c], we first find the vertex [c′] from Case I
with HC([c]) = HC([c′]). On one hand, splitting at all relevant positions gives
[c′] = [111424143]. The top vertex in HC([c′]) is found by combining at all
relevant positions to get [1152453]. We cyclically rotate to find the lexicograph-
ically maximal representative of this vertex, which is ĉ = 5311524. The first
copy of M = 5 in this representative determines the parts that get toggled for
all vertices in this hypercube. Here, [5311524] matches with [14311524], whereas
[c] = [53111424] matches with [143111424]. Thus we match [c] by splitting the
5 rather than combining the parts 14.

22



Example 26. Let c = 1115251161515611154315, so M = 6, m = 5, A =
{9, 14}, and Bodd = {4, 11, 13, 18, 22}. We are in Case II, and [c] belongs to a
7-dimensional hypercube obtained by the seven independent choices of either
splitting the 6s at positions 9 and 14 or combining the 15s at positions 4, 11,
13, 18 and 22. Splitting at all possible locations in A, we see that HC([c]) =
HC([c′]) where c′ = 111525111515151511154315. On the other hand, combining
at all possible locations in Bodd shows that the top vertex of the hypercube
is [11625116666116436]. The lexicographically maximum representative of this
top vertex is ĉ = 66661164361162511. The initial 6 in ĉ corresponds to the 6 at
index 9 in c. Therefore, we match [c] by splitting this 6, obtaining the vertex
[11152511151515611154315].

The proof of Theorem 24 reveals the following structural property of the
graphs G∗p .

Corollary 27. For p an odd prime, there exists a collection H of induced sub-
graphs of G∗p such that (a) each H ∈ H is isomorphic to a k-dimensional hyper-
cube for some k ≥ 1; (b) every vertex in G∗p is a vertex of exactly one H ∈ H.

7. Results based on Computer Data

This section summarizes some computer investigations of the F -expansions
of cycG, where G ranges through all subgroups of Sn for small choices of n. For
more detailed information, see the SageMath [34] worksheet used to perform
most of these computations [35].

Proposition 28. The standardization approach fully succeeds for every sub-
group G of S3 except G = 〈(13)〉. For this subgroup, the standardization ap-
proach succeeds using C = {123, 132, 213}.

Also notice that G = 〈(13)〉 is conjugate to a subgroup H = 〈(12)〉 for which
the standardization approach fully succeeds.

Proposition 29. (a) The standardization approach fully succeeds for the follow-
ing subgroups of S4: {id}, 〈(34)〉, 〈(23)〉, 〈(12)〉, 〈(234)〉, 〈(123)〉, 〈(34), (12)〉,
〈(23), (24)〉, 〈(23), (123)〉, and S4. (b) The standardization approach succeeds,
but not fully, for the following subgroups of S4: 〈(24)〉, 〈(14)〉, 〈(13)〉, 〈(134)〉,
〈(124)〉, 〈(24), (13)〉, 〈(23), (14)〉, 〈(1234)〉, 〈(34), (134)〉, 〈(24), (124)〉, and
〈(12)(34), (24)〉.

Every conjugacy class of subgroups of S4 contains a representative subgroup
where the standardization approach succeeds, with the sole exception of the
conjugacy class of G = 〈(12)(34)〉. For this G, (17) holds algebraically with
D = {∅, {2}, {1, 3}, {1, 2, 3}}.

There are 19 conjugacy classes of subgroups of S5. Ten of these classes have
representatives where the standardization approach fully succeeds, and four
of the other classes have representatives where the standardization approach
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succeeds. There are five other classes where (17) holds algebraically for some
choice of D.

Finally, we have some isolated experimental results indicating that the set C
in (1) can sometimes be taken to be a subgroup of Sn. Here are some examples
when n = 7: for G = A7 we may take C = 〈(17)(26)(35)〉; for G = 〈(23)(45)(67)〉
we may take C = A7; for G = S′6 × S′1 we may take C = 〈(1234567)〉; and for
G = A′6 × S′1 we may take C = 〈(1234567), (27)(36)(45)〉. In general, these sub-
groups C do not always yield a bijective proof via the standardization approach,
since (10) need not hold.

Our experiments show that the standardization approach succeeds much
more often than one might expect. We leave it as an open problem to charac-
terize those subgroups of Sn (or conjugacy classes of subgroups) for which the
standardization approach succeeds or fully succeeds.
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