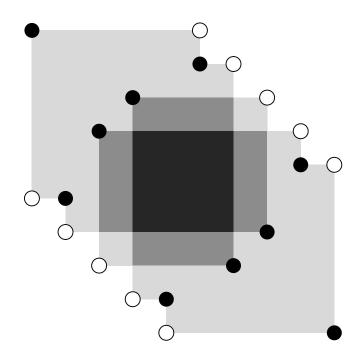
An Overview of Kazhdan-Lusztig Polynomials

Greg Warrington
University of Pennsylvania
www.math.upenn.edu/~gwar
gwar@math.upenn.edu

October 21, 2003



K-L polynomials

For any Coxeter group, W, Kazhdan and Lusztig defined polynomials $P_{x,w}$ for each pair $x,w\in W$.

1. Combinatorics

• Intrinsic proofs of properties

2. Geometry

- Singularities of Schubert varieties
- Poincaré polynomials

3. Representation theory

- Representations of Hecke algebras
- Multiplicities in Verma modules

Coxeter groups

A Coxeter group, W, is a group with presentation

$$W = \langle s_{\alpha} \in \Delta \mid (s_{\alpha} s_{\beta})^{m_{\alpha,\beta}} = 1 \rangle$$

where

- ullet Δ is some finite indexing set,
- $m_{\alpha,\alpha}=1$ for all $\alpha\in\Delta$, and
- $m_{\alpha,\beta} = m_{\beta,\alpha} \in \{1,2,\ldots\} \cup \infty$ for all $\alpha,\beta \in \Delta$.

Example:

 S_n : The symmetric group on n letters.

- $\Delta = \{1, 2, \dots, n-1\},$
- $s_i \leftrightarrow (i, i+1)$,
- ullet $m_{i,j}=3$ if |i-j|=1, and
- $m_{i,j} = 2$ if |i j| > 1.

Ranking the poset

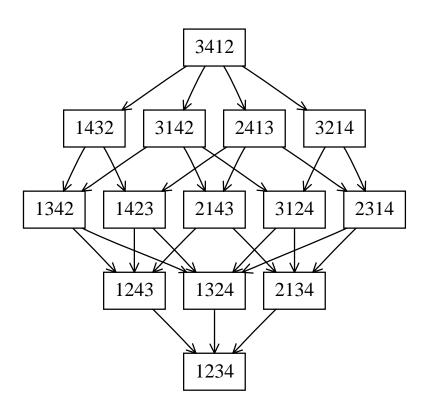
The **length** of $x \in W$, denoted l(x), is the minimum k such that we can write $s_{i_1} \cdots s_{i_k}$.

Example:

For
$$S_n$$
, $l(w) = \#\{i < j \mid w(i) > w(j)\}$.

The **Bruhat-Chevalley order** is the transitive closure of v < vt when

- 1. $t = w s_{\alpha} w^{-1}$ for some $w \in W$, and
- 2. l(vt) = l(v) + 1.



Hecke algebras

The Hecke algebra, $\mathcal{H}(W)$, associated to the Coxeter group W is the $\mathbb{Z}[q^{1/2},q^{-1/2}]$ -algebra with basis $\{T_w\}_{w\in W}$ and multiplication:

$$T_s T_w = \begin{cases} T_{sw}, & \text{if } l(sw) = l(w) + 1, \\ q T_{sw} + (q-1)T_w, & \text{if } l(sw) = l(w) - 1. \end{cases}$$

Define an involution $\overline{}$ on $\mathcal{H}(W)$ as the linear extension of $q\mapsto q^{-1}$ and $T_w\mapsto (T_{w^{-1}})^{-1}$.

Theorem 1 (K-L). There is a unique basis $\{C'_w\}_{w\in W}$ of $\mathcal{H}(W)$ such that

1.
$$\overline{C'_w} = C'_w$$
, and

2.
$$C'_w = q^{\frac{-l(w)}{2}} \sum_{x \le w} P_{x,w} T_x$$

where $P_{x,w} \in \mathbb{Z}[q]$, $P_{w,w} = 1$ and

$$\deg(P_{x,w}) \le \frac{l(w) - l(x) - 1}{2}$$

when x < w.

Properties of Kazhdan-Lusztig (KL) polynomials

1.
$$P_{x,w} = 0$$
 if $x \not \leq w$.

2.
$$P_{x,w}(0) = 1$$
 if $x \leq w$.

3.
$$P_{sx,w} = P_{x,w}$$
 if $sw < w$.

Let $\mu(x,w)$ be the coefficient of $q^{\frac{l(w)-l(x)-1}{2}}$ in $P_{x,w}$.

Assume sw < w and sx < x:

$$P_{x,w} = qP_{x,sw} + P_{sx,sw} - \sum_{\substack{z \le sw \\ sz < z}} \mu(z,sw) q^{\frac{l(w)-l(z)}{2}} P_{x,z}.$$

On μ

Q: What is $deg(P_{x,w})$?

Q: When is $\mu(x,w)$ nonzero?

Q: What values can $\mu(x,w)$ attain?

0-1 conjecture

Conjecture: For S_n , $\mu(x, w) \in \{0, 1\}$.

Counterexamples (M):

$$x = [6, 5, 2, 1, 10, 9, 4, 3, 14, 13, 8, 7, 12, 11, 16, 15]$$

$$w = [13, 9, 2, 1, 14, 10, 5, 3, 16, 11, 6, 4, 12, 7, 15, 8]$$

$$l(x) = 32, \quad l(w) = 53,$$

$$P_{x,w} = 5q^{10} + 72q^9 + 387q^8 + 1039q^7 + 1610q^6 + 1536q^5 + 931q^4 + 365q^3 + 92q^2 + 14q + 1.$$

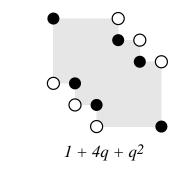
$$x = [8, 7, 4, 2, 1, 13, 12, 6, 5, 3, 11, 10, 9, 16, 15, 14]$$

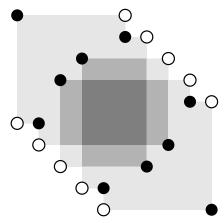
$$w = [13, 11, 7, 2, 1, 16, 12, 8, 4, 3, 14, 9, 5, 15, 10, 6]$$

$$l(x) = 39, \quad l(w) = 60,$$

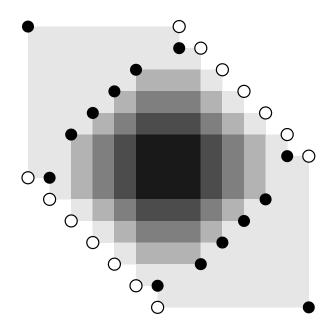
$$P_{x,w} = 5q^{10} + 56q^9 + 231q^8 + 533q^7 + 776q^6 + 755q^5 + 501q^4 + 226q^3 + 67q^2 + 12q + 1.$$

A family (M-W)





 $1 + 16q + 75q^2 + 124q^3 + 58q^4 + 4q^5$



 $1 + 36q + 455q^2 + 2564q^3 + 6359q^4 + 7090q^5 + 3462q^6 + 620q^7 + 19q^8$

Sequences

$a_n = 4a_{n-1} + 3a_{n-2}$	0,1,4,19,88,409,1900,
	8827,41008,190513,
Trees of diameter 8	1,4,19,66,219,645,
	1813,4802,12265,
Powers of $\sqrt{19}$	1,4,19,82,361,1573,
rounded down	6859,29897,130321,

Coefficients of KL polynomials

Q: Is $P_{x,w} \in \mathbb{N}[q]$?

Notation:

- SL(n): $n \times n$ matrices of determinant 1.
- B: subgroup of upper triangular matrices.

Bruhat decomposition: $SL(n) = \coprod_{w \in S_n} BwB$.

Definitions:

- Flag manifold: $SL(n)/B = \coprod_{w \in S_n} BwB/B$.
- Schubert cell: $X_w^{\circ} := Bw$.
- Schubert variety: $X_w := \overline{X_w^{\circ}}$.

Facts:

- $X_w^{\circ} \cong \mathbb{C}^{l(w)}$.
- $X_w = \coprod_v X_v^{\circ}$.

Intersection Cohomology

Let $\operatorname{IH}^*(X_w)$ denote the (middle) intersection cohomology of the Schubert variety X_w .

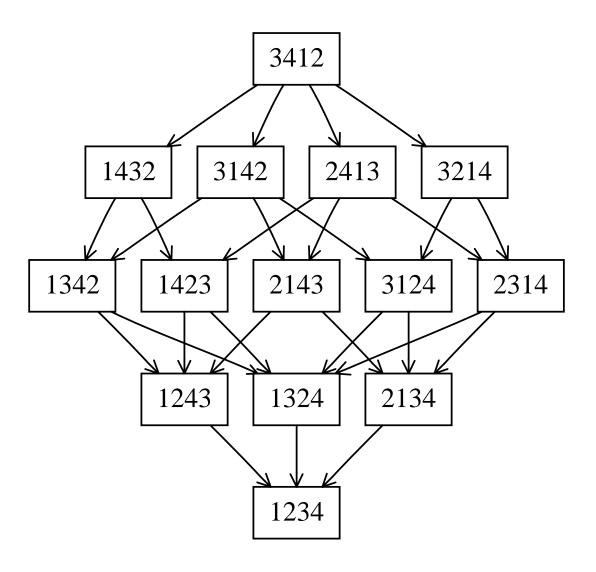
Let $\operatorname{IH}_x^*(X_w)$ denote the corresponding stalk at a point $x \in X_w$.

Theorem 2 (K-L). For W a Weyl group,

$$\sum_{x \le w} q^{l(x)} P_{x,w}(q) = \sum_{i} \dim(\operatorname{IH}^{2i}(X_w)) q^i,$$
$$P_{x,w}(q) = \sum_{i} \dim(\operatorname{IH}^{2i}_x(X_w)) q^i.$$

NB: The second equality implies $P_{x,w}(q) \in \mathbb{N}[q]$ when W is a Weyl group.

Duality



$$\sum_{x \le w} q^{l(x)} P_{x,w}(q) = \sum_i \dim(\mathrm{IH}^{2i}(X_w)) q^i.$$

Coefficients of KL polynomials

Q: Is
$$P_{x,w} - P_{y,w} \in \mathbb{N}[q]$$
 for $x \leq y$?

Q: Can any polynomial subject to the above conditions be realized as a KL polynomial?

Q: What are the coefficients of $P_{x,w}$ counting?

Q: When does $P_{x,w} = 1$?

Singularities

 X_w is singular at the point p iff

$$\dim(T_p(X_w)) > \dim(X_w) = l(w).$$

Theorem 3 (K-L,P). If W is a "simply-laced" Coxeter group, then $P_{x,w}(q) = 1$ iff x is a non-singular point of X_w .

Q: Is there a combinatorial characterization of when $P_{x,w}(q)=1$?

Pattern avoidance

 $w \in S_n$ is **321-avoiding** if there do not exist i < j < k with w(i) > w(j) > w(k).

Theorem 4 (L-S). For $W = S_n$, $P_{e,w} = 1$ if and only if w is 3412- and 4231-avoiding.

Example:

w = [6, 4, 1, 7, 2, 5, 3] is not 3412- or 4231-avoiding.

Theorem 5 (B-W,C,K-L-R,M). For fixed $w \in S_n$, the maximal elements $x \leq w$ such that $P_{x,w} \neq 1$ can be characterized in terms of patterns.

Q: What does $P_{x,w}(1)$ count?

Lie algebras

Let g be a finite-dimensional complex semisimple Lie algebra:

- is a finite-dimensional complex vector space,
- has no nonzero abelian ideals,
- ullet has a skew-symmetric bilinear form $[\cdot,\cdot]$, and
- \bullet $[\cdot, \cdot]$ satisfies the Jacobi identity.

Example:

 $\mathfrak{sl}_n = \text{traceless } n \times n \text{ matrices.}$ [X,Y] = XY - YX.

Cartan subalgebras

Q: What do representations of \mathfrak{g} look like?

Let $\mathfrak h$ be a **Cartan subalgebra** of $\mathfrak g$:

- a commutative subalgebra,
- that is maximal,
- and simultaneously diagonalizable

Example: For \mathfrak{sl}_n , $\mathfrak{h} \leftrightarrow$ traceless diagonal $n \times n$ matrices.

Weights & Roots

Let
$$\mathfrak{h} = \langle H_1, \dots, H_r \rangle$$
.

Example: For \mathfrak{sl}_n , $H_i = E_{ii} - E_{i+1,i+1}$.

 $(m_1, \ldots, m_r) \in \mathbb{C}^r \setminus 0$ is a **weight** of π if there exists a nonzero $v \in V$ such that $\pi(H_i)v = m_iv$ for all i.

Fact: Weights are in \mathbb{Z}^r .

A root is a weight of the adjoint representation

$$ad_X(Y) = [X, Y].$$

$$\mathfrak{sl}_3$$

Generators of \mathfrak{sl}_3 :

$$H_1 = E_{1,1} - E_{2,2},$$
 $H_2 = E_{2,2} - E_{3,3},$
 $X_1 = Y_1^t = E_{1,2},$
 $X_2 = Y_2^t = E_{2,3},$
 $X_3 = Y_3^t = E_{1,3}.$

Adjoint action of H_1 and H_2 :

$$[H_1, X_1] = 2 X_1, \quad [H_1, Y_1] = -2Y_1,$$

 $[H_2, X_1] = -X_1, \quad [H_2, Y_1] = Y_1,$

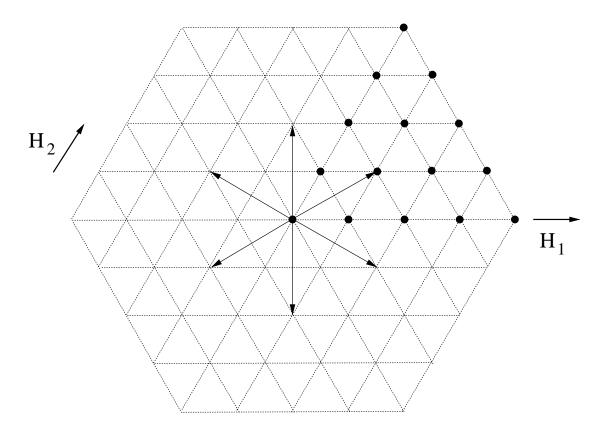
$$[H_1, X_2] = -X_2, \quad [H_1, Y_2] = Y_2,$$

 $[H_2, X_2] = 2 X_2, \quad [H_2, Y_2] = -2Y_2,$

$$[H_1, X_3] = X_3, \quad [H_1, Y_3] = -Y_3,$$

 $[H_2, X_3] = X_3, \quad [H_2, Y_3] = -Y_3.$

Weyl group



The **Weyl group** of $\mathfrak g$ is the symmetry group of the roots. It is a Coxeter group. For an appropriate inner product on $\mathfrak h$, it is generated by reflections.

Theorem of the highest weight

Fact: There is a natural partial order \leq on weights.

A **highest weight module**, V_{λ} , is a representation of \mathfrak{g} with weight λ such that if ν is a weight of V_{λ} , then $\nu \preceq \lambda$.

Theorem 6. Every finite-dimensional irreducible representation of \mathfrak{g} is a highest weight module for some dominant integral weight.

More facts:

- 1. A **Verma module**, M_{λ} , is a universal highest weight module.
- 2. If λ is dominant integral, then M_{λ} has a unique finite-dimensional irreducible quotient, L_{λ} .

The Kazhdan-Lusztig conjecture

Setup:

- 1. Pick a dominant integral weight, λ_0 .
- 2. Define a shifted action of W on weights " $x \cdot \lambda$ ".
- 3. Let $[M_{x \cdot \lambda_0}:L_{
 u}]$ denote the multiplicity of $L_{
 u}$ in $M_{x \cdot \lambda_0}.$

Theorem 7 (V,B-G-G,vdH). $[M_{x\cdot\lambda_0}:L_{\nu}]\neq 0$ iff $\nu=y\cdot\lambda_0$ for some $y\geq x$.

Theorem 8 (B-G-G). $m(x,y) = [M_{x \cdot \lambda_0} : L_{y \cdot \lambda_0}]$ is independent of λ_0 .

Theorem 9 (Conj. of K-L; B-B,B-K).

$$m(x,y) = P_{x,y}(1).$$