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Abstract

This article investigates a remarkable generalizatiomefgenerating function that enumerates
partitions by area and number of parts. This generatingtifmés given by the infinite product
[1,,1/(1 — tg"). We give uncountably many new combinatorial interpretatiof this infinite
product involving partition statistics that arose oridipan the context of Hilbert schemes. We
construct explicit bijections proving that all of thesetistiécs are equidistributed with the length
statistic on partitions ofi. Our bijections employ various combinatorial construetionvolving
cylindrical lattice paths, Eulerian tours on directed riguliphs, and oriented trees.

1 Introduction

We begin by recalling one of the most famous classical resulthe theory of partitions. Aartition of
an integem > 0 is a weakly decreasing sequence of positive integers whosdss:. Given a partition
A= (A1 > Xy >--- > \), theareaof Ais|\| = A\ +-- - + A. Thelengthof X is £(\) = ¢, the number
of nonzero parts ir\. Thediagramof X is the set

dg(\) = {(i,j) ENxN:1<i<l(\), 1<j<\)

We visualizedg(\) as an array of(\) rows of boxes, left-justified, with; boxes in the’th row from
the top. Theransposeof A is the partition\’ whose diagram i$(j, ) : (4, j) € dg(A)}, so that\} is the
number of boxes in thg¢'th column ofdg(\). Let Par(n) denote the set of partitions af and letPar
denote the set of all partitions.

Theorem 1.
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Proof. The infinite product appearing in the theorem can be written
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by expandingl /(1 —tq') as a formal geometric series@j[q, t]]. We obtain a typical term in the infinite
product by choosing a monomigii¢** from each factor and multiplying these monomials together.
Such a choice of monomials is uniquely encoded by a partXi@onsisting ofk; parts equal ta, for
eachi > 1. Clearly[[, thi¢" = ¢\t*™. Adding up all these terms gives the first equation in the
theorem. Setting: = ) and noting thatu| = |A\| andu; = 4()\), we obtain the second part of the
theorem. O

This paper investigates a surprising generalization &f tbsult, which we now describe. For each
positive real number, we will introduce two statistics on partitions, denotefl andh, . First we
need some preliminary definitions. Given a partitiand a celle = (i,j) € dg(A), thearmof cis
a(c) = A; — j, which is the number of cells to the right ofin its row. Theleg of c is i(c) = X} — 1,
which is the number of cells belowin its column. For any logical statemef let x(P) = 1if P is
true andy(P) = 0 if P is false. For each real such that) < x < oo, define

B a(c) a(c) +1
hI(A)—Cegg:(A)X<Z(C)+1 <z< I > (\ € Par).

For allz such that) < z < oo, define

o a(c) a(c) +1
hx(/\)—cegg:(/\)x<l(c)+l<x§ 1 > (\ € Par).

In these formulas, a fraction with a zero denominator isrpreged astoo.

Example 2. If X = (4,2,2), thenhf(\) =4, hf (\) = 7, h] (\) =5, hys(A) =4, b (A) = 3 =£(N),
andh_(\) =4 = .

Note that a celt € dg(\) contributes toh (1)) iff a(c) = 0iff cis the rightmost cell in its row. The
number of such cells i§()\), sohg (A) = £(A). Similarly, c contributes tah () iff I(c) = 0iff cis
the lowest cell in its column. The number of such cellg issoh_ (A) = A;. More generally, note that
every cellc = (i, j) € dg(\) has an associated cell= (j,i) € dg(\") which satisfies:(¢') = i(c) and
I(c') = a(c). It follows thathE(X) = hf, (X') for all z and allX.

We can now state the generalize({ partition theorem.

Theorem 3. For all real z € [0, 00),

oo
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AePar i=1
For all z € (0, o0],
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S MO . 3
I LL] —tg (3)
A€Par i=1

The classical Theorem 1 corresponds to the cased) andz = ~c in this theorem.

Theorem 3 (forx irrational) seems to have been first discovered by Mark Hajraihough it does
not appear explicitly in the literature [8]. Haiman foune: tfollowing geometric proof of the theorem
using results of Ellingsrud and Stremme on the Hilbert sahefrpoints in the plane [2, 3]. Ellingsrud
and Strgmme gave explicit descriptions of the Biatynickida cells [1] associated to the action of a



two-dimensional complex tordg = (C*)? on the Hilbert scheme. In [9], Haiman explicitly computed a
system of local parameters at edEHixed point that ard’-eigenfunctions and are nicely indexed com-
binatorially. The choice of the “slope” parameterZ Q corresponds to the choice of a one-parameter
torus inT. The dimensions of the Bialynicki-Birula cells for this eparameter torus are then distributed
according to the partition statistic” (which equals:, for z irrational). On the other hand, these dimen-
sions are always distributed according to the Betti numbgtise Hilbert scheme. Thus the distribution
of h} is independent of. This completes Haiman’s geometric proof of the theorem f&jme related
work involving the statistic:;” may be found in [10, 11].

Our goal in this document is to give a purely combinatorialgbrof Theorem 3, using no algebraic
geometry. The main steps in our proof are as follows:

1. We show that Theorem 3 is a consequence of the followingtres

Theorem 4. For all positiverationalnumberse and all integersn > 0,

3 hEO) SO, 4

A€Par(n) A€Par(n)

2. We fix a positive rational number= r /s and define new statistiesid,, c;-, andc, on partitions.
These statistics have the property thatl, +c = h andmid, +c; = h, . We will consider
generating functions

Frsn(q,z,w,y) Zq\AI mid,./5 (A T/S( )yc;/s(x)

where the sum extends over partitionsontained in a right triangle of size: by sn. We will see
that Theorem 4 is implied by the following symmetry property

Theorem 5. Suppose: and s are relatively prime positive integers amd> 0. Then
Fr,s,n(Qazaw>y) = Fr,s,n(Qazava)' (5)

3. We give a bijective proof of Theorem 5. The first step is tpagte to each partitioha certain di-
rected multigraph\/ (\) and Eulerian tou€ (1)), following a construction of Jonas Sjdstrand [13].
We show that the statistidg\|, mid, ;5(\), andc™(A) + ¢~ () depend only on the multigraph
M (), not on the Eulerian touf (\). We then construct an involution that modifies the Eulerian
tour £()) in such a way that the statistics andc™ are interchanged. This induces a map on parti-
tions that switches™ andc™ while fixing the area and mid statistics. The well-known agction
between Eulerian tours and oriented trees {66 of [14]) plays a key role in constructing these
maps.

Our proof of Theorem 3 will be completely bijective. More pisely, for anyz,y € [0, oc], any
§,e € {+,—}, and anyn > 0, we will construct an explicit bijection oRar(n) that sends the statistic’
to the statistich;,. (Here and below, we exclude the two choi¢ess) = (0, —) and(z,d) = (oo, +).)
This bijection is essentially a composition of finitely malijections that switcth,” andh;” at each
“critical” rational numberr betweenr andy. (This terminology is explained in the next section.) The
net result is a kind of “combinatorial homotopy” that slovdgforms the original partition into its image
as the parameter value goes freno y. See Figure 6 for an example.



The rest of the paper is organized as follows. We show thabrEme 4 implies Theorem 3 in Sec-
tion 2. We show that Theorem 5 implies Theorem 4 in Sectiore8ti@n 4 describes various combinato-
rial encodings of partitions in terms of lattice paths, Eiale tours on directed multigraphs, and indexed
collections of binary words. Section 5 derives new formditasour partition statistics in terms of these
encodings. Section 6 defines the involution used to proverEme 5. Section 6.3 contains an example
of the “combinatorial homotopy” mentioned above. Sectiaoicludes by describing an intriguing link
between Theorem 3 and an unsolved problem involving thei&aigimang, t-Catalan numbers.

2 Reduction to Critical Rationals

Proposition 6. Theorem 4 implies Theorem 3.

Proof. Forz € [0, 0] andd € {+, —}, define

Hin)= > "™ eNp).
A€Par(n)

We will show thatH? () is independent af ands. In particular, this yields

) = ()= Y ¢
A€Par(n)

for all n, z, and§. Theorem 3 follows immediately by multiplying by, adding over all. > 0, and
applying Theorem 1.

Fix an integem > 0. We say that a positive rational numbers acritical rational for n iff there
exists a partition: € Par(n) and a celk € dg(u) such thatl(igfz1 =ror “(f();)rl = r. By convention,
0 and+oo are also considered to be critical rationals for everyet Crit(n) denote the set of critical
rational numbers fon; evidently,Crit(n) is finite. For example,

Crit(5) = {0,1/4,1/3,1/2,2/3,1,3/2,2,3,4, +00}.

(More generally, it is easy to check th@tit(0) = {0, 00} andCrit(n) = Crit(n — 1) U {a/(n — a) :
0 < a < n}forn > 1.) Write Crit(n) = {0 =19 < r; <--- <ryp =+oo}, wherek depends om.
Define open interval$; = (r;_1,r;) for 1 < j < k. Then[0, co] decomposes into the disjoint union

[0,00] =11 UIsU---U I UCrit(n).

Let z, 2’ be two elements of the same interva) and letd, &’ € {+, —}. Suppose\ is any partition of
n. Since there are no critical rational numbers betweemdz’ (inclusive), it is immediate from the
definitions of the statistics that a celle dg(\) contributes tahd () iff ¢ contributes ta:%,(\). Thus

) = (N Adding over all), we see that for alt, 2’ € I,

HS(n) = H (n) e N[t]. (6)
A similar argument shows that for atl € I,
+ _ 6 -
Hrj71(n) - Hx - Hrj (n) vn 2 0. (7)
On the other hand, the assumed equations (4) imply in p&tithat
Hi(n)=H,(n) (n>0,1<j<k—1). (8)
Equations (6), (7), and (8) clearly imply th&t (n) is independent of ands. O



Supposer < 2/ andd,d’ € {+,—} are given. Suppose further that we have bijective proof8)f (
for each critical rationat;. Then we can construct a bijective proof of the idenfif§(n) = H? (n)
by simply chaining together the bijections used at eaclicatitational lying between: andz’. (An
example of this process is given §.3.) Thus a bijective proof of Theorem 4 at all critical oaidls
leads immediately to a bijective proof of Theorem 3.

3 Reduction to Symmetry Property

In this section, we prove that Theorem 5 implies Theorem 4 Mt first define the partition statistics
mid,, ¢}, andc; and the generating functiofi. 5 ,, appearing in the statement of Theorem 5. Given a
positive rational number, write z = /s wherer ands are positive integers witged(r, s) = 1. For
each\ € Par, define themiddle statistic, thecritical-plus statistic, thecritical-minus statistic, and the
critical-total statistic for)\ as follows:

mid, /s (\) = Z x(sa(c) —ri(c) € (—s,+7))

cedg(N)

C:_/s(/\) = Z x(sa(c) —ri(c) = +r)
cedg(N)

Cr_/s(/\) = Z x(sa(c) —ri(c) = —s)
cedg(N)

CtOtr/s(/\) = C:—/S(A)—I_CT_/S(/\)

By settingz = r/s in the definitions ofi} andh, and clearing fractions, we see that

b (A) = > X(sa(c) = ri(c) € (—s,+r]) = mid, /5(\) + ¢y (N 9)
cedg(N)

by, (A) = > X(sa(c) = ri(c) € [=s,+7)) = mid, /5(}) + ¢rs(N). (10)
cedg(N)

Example 7. Letr = 3, s = 2, and\ = (12,12,10,8,7,4,1,1,1). Then|)| = 56, midy5(\) = 29,

c;/Q(A) =6, c5y(A) = 3, ctotga(A) =9, h;/z(A) =35, hy,(A) = 32.

Next we definePar, s, and F}. s ,. Forp € Par, letdg, ; ,(u) be the diagram of: (regarded as
a collection of unit squares iR?) translated so that the northwest corner of the northwestest cell
hasz, y-coordinates(0, sn). Let A, ., be the closed triangle iR? with vertices(0,0), (0, sn), and
(rn, sn). Define
Par, s, = {pu € Par : dg, ¢ ,,(11) € A s}

For example, Figure 1 shows th@e, 12,10,8,7,4,1,1,1) € Parsz 5 5. Finally, define

. + -
Fr,sm(% Z,w, y) = Z qIA‘Zmldr/s()‘)wcr/s()‘) yCr/S(A) .
AePary s n

Theorem 5 asserts that (¢, 2, w,y) = Frsn(q, 2, y, w).

Proposition 8. Theorem 5 implies Theorem 4.



(0,10 (15,10)
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Figure 1: A partition diagram inscribed in a triangle.

Proof. We must prove that;} andh, are equidistributed oiar(m) for all positive rationalx and
all integersm > 0. Supposer = r/s > 0 andm > 0 are given. Choose large enough that
Par(m) C Par, .. (For instance, it suffices to choose> (r + s)m/rs.) In the assumed equation
Frsn(q, z,w,y) = Fr50(q, 2,9, w), setz = wy and extract the coefficient gf”. Using (9) and (10),
we obtain the formula

Z ’Ll)hj'/s()\)yh;/5 ) = Z w ;/5 ()\)yhj/s()\).
AePar(m) AePar(m)

To complete the proof, just set= ¢ andy = 1. O

Thus all the theorems in the introduction follow from Theaar®. Indeed, Theorem 5 is much
stronger than the others since it shows ﬂn@g and hr‘/s arejointly symmetric onPar(m), and it also

gives information about the-variate distribution of areanid, /st c:'/s, and c;/s on the collection of

partitions contained in anyn x sn triangle. In the coming sections, we will prove Theorem 5 by
constructing involutions on the sefar, ; , that preserve area amdid, /; while interchangingzj/s and

c;/s. We will also prove explicit fermionic formulas giving theift distribution of the four statistics on
these collections of partitions.

4 Combinatorial Descriptions of Partitions

To prove Theorem 5, it will be helpful to introduce ways of eding partitions inPar, , ,, using lattice
paths, Eulerian tours on directed multigraphs, and famiebinary words. We discuss these encodings
in this section. Our immediate goal is to prove the strut¢ttgsults given below in Theorem 14 and its
corollary. Throughout this section, we fix positive integers, n such thaiged(r, s) = 1.

4.1 Preliminary Definitions

A wordis an ordered sequence of letters drawn from some alphabgt’ (22 N?) be the set of all words
that consist of: copies of the letteF? andb copies of the letteN. We can view wordsy € W (E*N?) as
lattice pathsfrom (0, 0) to (a, b) by interpretingE' as a unit east step arid as a unit north step. A word



w € W(E™N*") is called an-/s-Dyck word of ordem iff every point(x,y) on the associated lattice
path satisfiey > (s/r)z. This means that the lattice path lies completely withinttingle A, ; ..

A directed graphs an ordered pai = (Vg, Eq), whereV; is a set ofverticesandE¢ C Vi x Vi
is a set of(directed) edgesGiven an edge = (v, w), we setinit(e) = v andfin(e) = w. A multigraph
isapairM = (Vir, Eyr), whereVy, is a set of vertices anf;; is now amultisetof directed edges. This
means that each edge occurdify with a certain multiplicity. Graphs are special kinds of tigraphs
in which each edge has multiplicity one. Thelegreeof a vertexv € V), denotedindeg(v), is the
number of edges € E), such thatfin(e) = v (counted with multiplicities). Theutdegreeof a vertex
v € Vi, denotebutdeg(v), is the number of edgese Ejs such thatnit(e) = v. A multigraphM is
balancediff indeg(v) = outdeg(v) for all v € V};. Anisolated vertexof M is a vertexv € Vj; such
thatinit(e) # v # fin(e) for every edge:.

Fork > 1, atrail of lengthk in M = (Vy, Eyy) is a sequenc® = (v, vy, ..., vx) such that each
v; € Vay and(v;—1,v;) € Epy for 1 < i < k. We say that the trastartsat vy andendsatvy. A trail is
closediff vg = vi. A pathis a trail in which all vertices are distinct, except that ileva vy = vi. A
cycleis a closed path. Thedge multisebf a trail is the multisee(P) = {(vi—1,v;) : 1 < i < k}. An
Eulerian tourof M is a closed trail inM/ whose edge multiset is precisely;. An oriented treein M
leading from the rooty is a graphl” = (Vp, E7) such thal’y C V), Er is a subset of the multisét,,
vo € Vp, and for each # vg in V there exists a unique pathThfrom vy to v. We writedistr(vg, v) to
denote the length of this unigque path. The tféeis said tospan)M iff Vi = V. Oriented trees leading
to the rootuv, are defined analogously. A multigragil is connectedff for any two distinct vertices
v,w € Vyy, there exists a path ifd from v to w. It is well-known that a multigraptd/ with no isolated
vertices has an Eulerian tour ifff is connected and balanced [14].

4.2 Lattice Path Formulation

We can represent a partitigne Par, ; , as anr/s-Dyck path of order: by “following the frontier ofy..”
More specifically, inscribe the diagram pfin the triangleA, , , as shown in Figure 1. Define the lattice
pathBdy(x) € W (E™N*") by taking north and east steps frqi 0) to (rn, sn) along the southeast
boundary ofdg, , (). For example, the boundary of the partitipn= (12,12,10,8,7,4,1,1,1) €
Pars 5 5 is shown as a thick shaded line in Figure 1. We have

Bdy (1) = NENNNEEENEEENENEENEENNEEE W (E® N10),

DefineVBdy (1) to be the sequence of lattice pointsRA visited by the patBdy(1). More explicitly,

Vde(,u) = ((CL'(], yO)» (mb yl)a ) (xrn—i-sny yrn+sn))

where(zo,y0) = (0,0), (w4, i) = (w1 + 1, yi-1) if Bdy(p); = E, and (x4, i) = (i-1,¥yi-1 + 1)
if Bdy(u); = N. Note that(z,,4sn, Yrntsn) = (rn, sn), andy; > (s/r)x; for all i sincedg,. ; (1) €
A, s n- Clearly,p is uniquely recoverable from eith®&dy (1) or VBdy ().

4.3 Eulerian Tour Formulation

The next step is to encode each partitjone Par, s, as an Eulerian tou€ (i) on a certain multi-
graphM (1) = (Var(w), Ear(re)), following a construction of Jonas Sjostrand [13]. To defthese
objects, we first introduce the/s-diagonal mapd,. s : R? — R given byd, s(z,y) = ry — sz. Write
VBdy (1) = ((20,90), - - - » (Trntsns Yrntsn)) @S above. Now defin@(u) = (vo, v1, ..., Vrntsn), Where
v; = drs(xi,y;). (By the definition of VBdy(u), it is equivalent to sety = 0, v; = vi—1 + r if



Bdy(u); = N, andv; = v;—; — s if Bdy(u); = E.) SinceBdy(u) is anr/s-Dyck path, it follows that
Vo = Urntsn = 0 @andv; > 0 for all i. Finally, define the multigrapd/ (1) by settingVy, (1) = {v; :
0 <i<rn+ sn}andlettingE;(u) be the edge multiset (£ (1)) = {(vi—1,vi) : 1 <i < rn+ sn}.
It is automatic from this definition that(y) is an Eulerian tour od/ () starting and ending &t

Example 9. Givenp = (12,12,10,8,7,4,1,1,1) € Parg 2 5. Using Figure 1, we compute:
E(p) =(0,3,1,4,7,10,8,6,4,7,5,3,1,4,2,5,3,1,4,2,0,3,6,4,2,0).
The multigraph)M (1) has vertex sef0, 1,2, 3,4, 5,6,7,8,10} and edge multiset
{(0,3) x 2,(1,4) x 3,(2,5) x 1,(3,6) x 1,(4,7) x 2,(7,10) x 1,

(2,0) x 2,(3,1) x 3,(4,2) x 3,(5,3) x 2,(6,4) x 2,(7,5) x 1,(8,6) x 1,(10,8) x 1}.
The notation(v, v’) x k means that the edde, v') occurs with multiplicityk in the given multiset.

The multigraph/ (u) has the following properties. (1) The vertex $&f(x) containsO and is a
finite subset oN. (2) M (1) has exactlyn + sn directed edges (counting multiplicities). (3) Every edge
in M () is either anorth edgeleading from some vertex to v + r or aneast edgdeading fromv to
v —s. (4) M(p) is connected, balanced, and has no isolated vertices. Wedetph,. , ,, be the set of
all multigraphs having properties (1) through (4).

A convenient way to visualize the multigrapgh () is to draw all the vertices between the lines
r+y=0andz +y = r + s in R? with “wraparound” at these two edges. A lattice point y)
in this region corresponds to the vertex= d, ;(x,y) in the multigraph. In this picture, edges from
v to v + r are indeed “north edges” in the usual sense, while edges drtorw — s are “east edges”
in the usual sense. Note that each vertex in the multigraibtained by “collapsing” all the lattice
points on the-/s-diagonalry — sx = v into the single vertex. Thus, we can view the touf(;) as a
cylindrical lattice pathobtained by collapsing the ordinary lattice p&ty (1) onto an % /s-cylinder.”
The multigraph from the previous example is illustrated iguFe 2.

For each multigrapld/ € MGraph define

Pary, = {p € Par, 5, : M(p) = M}.

Also defineETour, to be the set of all Eulerian toug&on M that begin and end at vert@x We have
just seen that every € Par); has an associated Eulerian tél) € ETour,,. Conversely, it is clear
that any Eulerian touf” € ETour), has the form&(x) for a unique partition, € Par,,. For, given

T = (0 = v9,v1, .., Urntsn), p IS determined by the conditiof8dy(u); = N if v; — v;—1 = r and

Bdy(u); = F if v; — v;—1 = —s. In summary, we have canonical bijectioPsr,; — ETour,, for each

M, which assemble to give a canonical bijection

Par, s n — U EToury, .
MeMGraph

T,8,M

4.4 Formulation using Arrival Words and Departure Words

We now introduce a convenient description of Eulerian t@und multigraphs using sequences of binary
words. Givenu € Par, , ,, define the sequence afrival words (w"”(x) : v > 0) as follows. Write
Bdy(p) = w1 tppysn and VBdy(p) = ((wi,y:) : 0 < i < rn + sn), as usual. Given, let



10
7 5
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Figure 2: Multigraph associated to the partitiof Example 9.

J1 < j2 < ... < jm be the indices such that. ,(x;,,y;.) = v. Definew’(n) = uj uj, - uj,.
Informally, we construct the arrival word® by traversing the Eulerian todi(y), recording an N every
time the tour arrives at via a north step from vertex— r, and recording an E every time the tour arrives
atv via an east step from vertex+ s. Thus if M (u) hasa; east edges enteringandb; north edges
enteringv, we havew® (i) € W (E®% Nb%),

Example 10. Forp = (12,12, 10,8,7,4,1, 1, 1), the nonempty arrival words are:
w’ = EE, w! = EFE, w?* = EEE, w® = NEEN, w' = NENNE,
w® = EN, w® = EN, w" = NN, w® = E, w'° = N.

We can use a dual construction to define the sequencemdrture words(y”(x) : v > 0) for
p € Par, g . Fixv. Writing Bdy(r) and VBdy(u) as above, lejf; < jo < ... < jy, be the indices
such thatd, s(xj, —1,y;,—1) = v. Definey’(u) = wj uj, - - - u;,,. Informally, we construct the departure
word 3V by traversing the Eulerian toud(u), recording an N every time the tour leavegoing north
to v + r, and recording an E every time the tour leavegoing east ta — s. Thus if M (u) hasc; east
edges leaving andd; north edges leaving, we havey® (i) € W (E® N%),

Example 11. Forp = (12,12,10,8,7,4,1, 1, 1), the nonempty departure words are:
v = NN, y' = NNN, > = NEE, y* = EEEN, y* = NNEEE,
y5 :‘E"E‘7 yﬁ :‘E“E‘7 y7 :NE, yS :E, yl(] — E.

There is no loss of information in the passage freto (v (1) : v > 0). For, knowing this sequence
of departure words, we can first recover the numlgindd;, which are sufficient to reconstitute the
multigraphM (1). Next, we can recover the Eulerian tau) (or equivalently, the lattice pafBdy (x))



by simply moving forward through the multigraph startingvattex0. At each vertex, we consult the
next unused character in the departure word for that vedeetide which step to take next (north or
east). We continue in this way fon + sn steps. Similarly, we can recoved (u), £(u), Bdy(u) andp

from the sequence of arrival words" (1) : v > 0). The only difference is that now we must reconstruct
Bdy(x) going backwards fronfrn, sn) to (0,0). At each step, we consult the next unused character in
the arrival word for the current vertex +eading right to left— to decide what the previous step in the
path must have been.

Example 12. Suppose that € Pars » 5 has the following sequence of arrival words.
w’ = EE, w' = EFEE, w?* = EEE, w> = NNEE, w* = NENNE,
w® =NE, wb=EN, w"=NN, w®=E, w'*=N.

By counting E’s and N's in each word, we discover tidd{») is the multigraph shown in Figure 2.
Moving backwards through the multigraph from vertex 0, weoker the sequence of steps

EEENEENNEENENENEEEEENNNEN.

Reversing this word and drawing the resulting lattice pathfind thatr = (12, 10,10, 8,7,6,1,1,1).

45 Characterization of Valid Arrival Words

We can summarize the results of the previous subsectioneirfalfowing way. Given a multigraph
M € MGraph, ,,, and a vertexw € Vi, let Ei, (v, M) be the number of east edges af enteringo.
The quantities,u (v, M), Nin(v, M), and Ny, (v, M) are defined similarly. Then we have shown that
the “arrival map”u — (w"(u) : v € V) gives an injection

¢q : Pary; — H W (EEn(0:M) N Nin(v,M)),
vEVM
Similarly, the “departure mapli — (y”(n) : v € Vs) gives an injection
qbd : ParM — H W(EEOUE(U,]\/I)NNOut(U,]\/I))‘
veVs

However, these maps amdt surjective in general. For, suppose we take an arbitraryesesg of
arrival words (resp. departure words) and perform the tegeneration procedure indicated in the last
subsection. Then it may well happen that we arrive back aéxérafter fewer thann + sn steps with
no unused edges left leading into (resp. away from) vertex 2a this situation, the given sequence of
words lies outside the image 6f, (resp.¢y).

Example 13. Consider the following sequence of arrival words.
w’ = EE, w! = EFE, w? = EEE, w> = NEEN, w' = EENNN,
w’ =NE, wb=EN, w"= NN, w®=E, w'*=N.
Drawing the multigraph and moving backwards from 0, we rectlie sequence of steps
FENENEENEEENNEENFEENN.
At this point, we have returned to vertéxand there are no unused letters leftif. Yet, we have not

used all the edges in the multigraph! So the given colleabforwrords is not in the image af,.
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We will now derive a simple characterization of the imagehs thap¢, (a dual result holds for
¢4)- This characterization follows readily from the connentbetween Eulerian tours and oriented trees
given in the proof of Theorem 5.6.2 of [14]. For the conveon®iof the reader, we recall the relevant
details now.

First we need a few more definitions. Uétz (2 N®) be the set of ally € W (E*N?) such thaty; =
E, and letWy (E*N?) be the set of altv € W (E*N?) such thats; = N. Dually, letW (E*N?) g be
the set of alkw € W (E*N?) such thatu,,, = F, and letiW (E*N?) y be the set of allv € W (E*N?)
such thatw,,, = N. Given a multigraphV/ € MGraph, ; ,,, let TreeA(M) be the set of all oriented
spanning trees leading from the r@btGivenT € TreeA (M), each nonzero vertexin M has a unique
edge ofT" leading into it. WriteT}, = N if this is a north edge, and writE, = E if this is an east edge.
Dual definitions apply to the sédireeD (M) of all oriented spanning trees leading to the r@ot

Theorem 14. For eachM € MGraph, , ,,, the arrival map is a bijection

¢q : Pary = U H W, (EEm(®:M) N Nin(0,M)),
TETreeA(M) veVs

Proof. Let S denote the set on the right side of the theorem statemesst.\i#@rshow thab, (1) € S for
eachu € Par)s. Givenp, write ¢, (1) = (w”(u) : v € Vi) as usual. Define a subgrafsh= (Vr, Er)

of M as follows. The vertex séftr is V. For each nonzero vertexof V), there is exactly one edge
of T' leading intov. This edge is an east edgeuif (1); = E and a north edge if»"(u); = N. Vertex
zero has no edges leading into it. Note that the edgé&sarfcode the “first arrivals” of the Eulerian tour
&£(p) at each nonzero vertex It follows from this definition thatw® (i) € W, (EFin (M) N Nin(v,M))
for eachv. Thus we need only verify th&t € TreeA(M).

Note that the directed graghhas|V),| vertices andV,,| —1 edges. Each nonzero vertex has exactly
one edge of " leading into it. To check that is an oriented spanning tree leading from zero, it evidently
suffices to prove thdl’ has no cycles. Assume, to get a contradiction, that (zg, 21, . .., zx) IS such
a cycle, wherée > 0 andz;, = z9. Among the vertices i, let z; be the vertex that occurs earliest in
the Eulerian tou€(u). Sincezy = zx, we can chooséso thatl < i < k. Since there is an edge from
zi—1 10 z; in T, z; cannot be vertex 0. Thus, the tour entetedbr the first time from some other vertex
Z'. This vertexz’ mustbe z;_1, by definition of the edge set @f. But z;_; # z;, so this contradicts the
choice ofz; as the earliest vertex i@ encountered by the tour. Therefdfec TreeA (M), as desired.
For later use, defin@ree(u) to be the tred” constructed here using the initial letters of the arrivatago
for p.

To complete the proof, we show that every objdct= (w’ : v € Vjy) € S has the forniV = ¢,(v)
for somer € Par,,. Given such &V, note first that we can recover the multigraphby counting letters
in the wordsw". We can also recover the tréec TreeA (M) from IV by looking at the initial letters of
the wordsw". Next, we execute the algorithm from the end of the last sttliseto recoveBdy(v) in
reverse. If the algorithm succeeds in consumingalt+ sn edges in the multigraph, then we will have
found av such that,(v) = W. Thus, it suffices to show that the algorithm never gets shed&re using
all the edges in/. Suppose the tour being generated by the algorithm hassjached some vertex(by
moving backwards along an edge leading out)pfand suppose that there exists an edge in the multiset
Eyr that has not yet been consumed by the tour. We consider tves.cas

Case 1w # 0. Since the tour starts 8t it follows that the tour has reachednce more than it has
left v. SinceM is balancedindeg(v) = outdeg(v), and therefore there must be an edge enteritigat
can be used to continue the reconstruction process.

Case 2w = 0. Note that the partial tour is closed in this case, so it srgach vertex as often as it
leavesv. To get a contradiction, assume that there are no unused edggring vertex. Recall that the
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edges ofl" came from thenitial letters of the arrival words, which are thest letters to be consumed by
the tour regeneration algorithm. Since there is at leastionsed edge by hypothesis, there must exist a
nonzero vertexv such that the edge @t leading intow has not yet been consumé&admong all suchw,
choose one such thdtsty (0, w) is minimal. Lety be the vertex just before on the path fron? to w

in T'. By choice ofy andw, one of the edges fromto w in M was not used by our partial toit. Since
indeg(y) = outdeg(y) and P entersy as often as it leaveg, we see that one of the edges leading into
was not used by our partial tour. By definition of the tour regration algorithm, it follows that the first
arrival edge leading intg (which is an edge of") was not used. Ify # 0, this contradicts our choice
of w. If y = 0, this contradicts our assumption that there were no remgi@dges entering vertex zero.
These contradictions show that there must be an unusedealdjad into vertex zero, which can be used
to continue the tour reconstruction process. O

SincePar, , ,, is the disjoint union of the various sefar;;, we obtain the following fundamental
structural result.

Corollary 15. The arrival map defines a canonical bijection

Parr’&n o~ U U H WTU (EEin(v,]\/f) NNin(v,]\/f))‘
MeMGraph,. ; , T€TreeA(M) vEVM

Dual arguments prove that the departure map is a bijection

¢g:Paryy = ) [ WP NNow M)y,
TE€TreeD (M) veEVy

These maps assemble to give a bijection

Par,. ., = U U ] gl yNowwd)y,
MeMGraph,.  ,, T€TreeD(M) vEVM

5 Reformulation of the Partition Statistics

As in the last section, we fix integers s, n with ged(r,s) = 1, and we consider partitiongs €
Par, s ». The next step towards the proof of Theorem 5 is to expregsatgion statisticgy|, mid,. /,(u),
cj/s(p), C;/S(,u), andctot, ¢(u) in terms of the lattice paths, multigraphs, Eulerian toarsiyal words,
and departure words from the last section. In this secti@will prove the surprising fact thap,
mid,./s(¢), andctot, /,(11) depend only on the multigraphf (1), not on the toui(u). On the other
hand, we show that’, (1) andc, (1) may be easily calculated using the arrival words and deggartu
words for i (respectively). Combining these facts with the structhietems from the last section, we
will deduce two fermionic formulas faF; 5 ,,.

To state these results more precisely, we introduce some ofinitions. Given a wordv =
wiws - - Wepy, € W(E*N?), theinversion sebf w is

Inv(w) = {(4,7) : 1 <i<j<a+bandw; = Fandw; = N}.

IMore precisely, this means that the number of times this edgers in the partially reconstructed tour is less than the
number of times this edge occurs in the edge mulitsgt
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Elements(i, j) of Inv(w) are calledinversionsof w; we letinv(w) = |Inv(w)| be the number of
inversions ofw. It is well-known that

Z qinv(w) _ |:CL + b:| _ H?ilb(l — qi) )
a,b ¢ Ilizi(l—4q") H?:l(l —q")
Next, letA(r, s,n) denote the unique partition of maximal areabifx, s ,,, and letA . (7, s,n) =
|A(r, s,n)|. Itis easy to check that(r, s,n); = rn — [ri/s]| and

weW (E*Nb)

s—1

Amax(rys,n) =rsn(n—1)/2+n ZLTZ/SJ
=0

Given a multigraph/ € MGraph define

7,8,11

area(M) = Amax(ras7n)_ Z LU/SJNOUt(U7M);

vEVMr

mid(M) = Apax(r,s,n) — Z Eip (v, M) Nipy (w, M) x(v > w);
v,weVs

ctot(M) = Y Ein(v, M)Niy(v, M) — (n — Ein(0,M)).

vEV)s

Theorem 16. For any . € Par, ; ,,, we have:

chp) =Y inv(w’(w), o)=Y mv(y’(w);

vEVMr vEVM

|u| = area(M (n)), midr/s(:u) = mid (M (p)), CtOtr/s(:u) = ctot (M (u)).

The proof of this theorem is rather long, so we break it up s#eeral subsections. Throughout the
proof, we fixy € Par, ,, and adopt the following notation. Writdy (1) = w = wiws - - - Wyp4sn €
W(EMLNS”); VBdY(N) = (<x07 yO)? R (xrn—i-sm yrn-i-sn)); M = M(:u) = (VM7 EM); and¢& =
E(p) = (vo,v1,. .., Vpnysn), Wherev; = d,. s(z,y;). Let(er, ez, ..., entsn) be the ordered sequence
of edges associated to the Eulerian t6(g), so thate; = (v;_1,v;). Finally, let(w’(u) : v € Vi) be
the sequence of arrival words for and let(y"(u) : v € Vi) be the sequence of departure words;for

5.1 Analysis ofct and ¢~

Note first that there is a canonical bijection betwdg(y) andInv(Bdy(x)). For, given acelt € dg(u),
consider the corresponding unit squarelif , ,,(x). Look for the east step; € Bdy(u) located south
of this square and the north step € Bdy(u) located east of this square. Clear(y,;) is an inversion
of w that is uniquely determined by the cell in question, and ecs®ly.

The stepsy; andw; in Bdy(u) correspond to the east edgeand the north edge; in the Eulerian
tour on M. We can compute the quantity.(c) — ri(c) from the edges; ande; as follows. Recall that
w; is an east step frorfx; — 1, y;) to (x4, y;), while w; is a north step frontz;, y; — 1) to (5, y;). Thus,
e; Is an east edge in/ fromv;_1 = ry; — sx; + stov; = ry; — sz;, While e; is a north edge i/ from
vj_1 = ryj —r — sv; t0v; = ry; — sr;. Consideration oflg,. ., (u) shows that(c) = z; — z; and
l(c) = y; — 1 — y;. Therefore,

sa(c) —rl(c) = sxj —sx; —ry; + 17+ 1Y =V —Vj_1 =V —V; + T = Vi1 —Vj_1 — S.
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In other words, ifc € dg(x) corresponds t¢i, j) € Inv(Bdy(u)), then we have
sa(c) — rl(c) = fin(e;) — init(e;) = fin(e;) — fin(e;) + r = init(e;) — init(e;) — s. (11)

Now observe that contributes to::r/s(u) iff sa(c) —ri(c) = +riff fin(e;) = fin(e;). Thus, the
StatiStiCC:_/s(u) counts the number of paiis< j such thate; is an east edge ang is a north edge
arriving at the same vertex @f/. Such pairs clearly correspond to the inversions in theouararrival
wordsv™ (). This proves the formula forjf/s(u) in Theorem 16. Similarlyg contributes to:;/s(u) iff
sa(c) — rl(c) = —s iff init(e;) = init(e;). Thus,c;/s(u) is the number of pairs < j such that; is
an east edge ang is a north edge departing from the same vertex/of The number of such pairs is
> vevy, Inv(y® (1)), which proves the second formula in Theorem 16.

At this stage, we can also present a preliminary formulanfiod, /(1) Namely, equation (11)
immediately yields

mid,/,(1) = > _ x(e; is an E edgeg; is a N edge, and- s < fin(e;) — init(e;) < 7).
i<j

This formula certainly appears to depend on the ordered selggencée;) in the Eulerian tour, not just
on the multigraph\/. But we will see shortly that this dependence is illusory.

5.2 Analysis of Area

The next step is to prove that

1] = Amax(r, s,n) = > |v/5| Nout (v, M) = area(M).

vEVM

Define area(u) = Amax(r,s,n) — |u|, which is the number of lattice squares in the skew shape
dg, s n(A(r,8,n)) — dg, ,»(1). It suffices to show thatrea®() = >, cy,, [v/8] Nout (v, M). Let

us count the number of lattice squares\p; ,, to the right of a given north step dsy(x). Suppose the
north step starts at the lattice poffat, b), which maps to the vertex = rb — sa in the multigraph. The
diagonal boundary oA\, ; ,, has equation: = (r/s)y, so that the pointrb/s, b) lies on this boundary.
Scanning left from that point t(u, b), it is clear that the number of complete lattice squareséaitfht

of this north step must be
r_b B _|rb—sa| lv/s]
3 a| = S = |V/S]|.

Adding over all the north steps Bdy(x), we obtain the desired expressidn, .y |v/s] Nout (v, M)
for the number of cells in the skew shape.

5.3 Analysis ofA(r, s,n)

We will prove the last two formulas in Theorem 16 by inductmmarea(y). We handle the base case
in this section. Clearlyarea®(u) = 0iff 1 = A(r, s,n). For convenience, writd = A(r, s,n). We first
show that

mid, /s(A) = [A] = Amax(r, s,1), c:'/s(A) = cr_/S(A) = ctot,/s(A) = 0.

It suffices to show thata(c) — rl(c) € (—s,r) for everyc € dg(A).
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By drawingA inside A, s ., we see that\; = rn — [ri/s] for 1 <i < spandA) = sn — [sj/r]
for 1 < j < rn. Given an arbitrary celt = (i, 5) € dg(A), we compute

sa(c) —ri(c) = s(rn—ri/s] —j) —r(sn—[sj/r] —1)
= (r[sj/r] = sj) + (ri — s[ri/s]).

The first parenthesized quantity lies in the interial-), while the second parenthesized quantity lies in
the interval(—s, 0], as the reader may readily check using the division algorithhus,sa(c) — ri(c) €
(—s,r), as desired.

We now gather information about the multigraph(A) and the Eulerian touf (A). We claim first
that every vertex of\/ (A) lies in the sef{0,1,...,r + s — 1}. If not, the Eulerian tou€ (A) must take
a north edge from some vertexto a vertexu + r > r + s. This edge corresponds to a certain north
step inBdy(A) starting at a pointz, y) with d, s(z,y) = u. Sinceu > s, the point(z + 1, y) satisfies
drs(x 4+ 1,y) > 0 and hence lies in the triangl®, , ,,. But then the unit square with southwest corner
(z,y) lies inside this triangle and outside contradicting the definition of.

Let us focus initially on the first + s steps ofA, which form a little lattice pathP. Letuy =
0,uq,...,u.+s be the vertices in the multigraph visited by the edges (@f) corresponding to the steps
of P. Let&’ denote the first + s edges in the touf (A). We claim thatu, . . . , u,+s—1 must be pairwise
distinct. If not, choosé < j in this range withu; = u;; note thatd < j — i < r + s. Suppose the tour
takesa north edges anbleast edges to go from to u;, wherea + b = j —i. Sinceu; = u; + ar — bs
and alsou; = u;, we havear = bs > 0. Sincea +b = j —i < r + s, we havea < sorb < r. Thus,
lem(r, s) < rs and henceged(r, s) > 1, a contradiction. It now follows from the first claim that thist

ug, - .., Ur1s—1 Must be a permutation of the verticésl, 2,...,r + s — 1. Now, & cannot go north
from any of the vertices, s + 1,...,s + r — 1; otherwiseM (A) would have a vertex r + s. So

&' takes east edges from vertices + 1...,s + r — 1 into vertices0, 1,...,r — 1. (12)
Moreover,£’ cannot go east from any of the vertidgd, 2, . .. , s — 1; otherwiseP would dip below the

bounding triangle. So
&' takes north edges from verticesl, ..., s — 1 into verticesr,» +1...,r +s — 1. (13)

We have now accounted for all the edge£bfSince there exists an east edge&barriving at vertex),
and sinceu; # ug = 0for 0 < ¢ < r + s, we must in fact have,., ; = 0. Repeating this argument for
the nextr + s steps inBdy(A), etc., we see that the full todl(A) just traces out the edge sequence in

&' n times in succession. We conclude that the vertex sat'@f) is {0,1,...,r + s — 1} and that the
edge multiset of\/ (A) is specified by the conditions
Ein(u,M(A)) =n, Nip(u,M(A))=0 for0<u<r; (14)
Ein(u,M(A)) =0, Nip(u,M(A))=n forr<u<r+s. (15)

In particular, there cannot exist vertices> w with Ei, (v, M(A)) # 0 and Nip(w, M (A)) # 0. Itis
now clear from the definitions that

mid(M(A)) = Amax(r, s,1) — 0 = mid, /4 (A);
ctot(M(A)) =0 — (n —n) =0 = ctot, /4(A).
This completes the proof of the base case.

Example 17. The multigraph corresponding 10(5, 3,3) = (13,11, 10,8,6,5, 3, 1,0) is shown in Fig-
ure 3.
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Figure 3: Multigraph forA(5, 3, 3).

5.4 Analysis of ctot

In this subsection, we prove that

CtOtr/s(N) = Z Nin(U7M)Ein(U7M) - (TL - EIH(OJM)) = CtOt(M)'

veVs

We use induction oarea®(u). The base case = A(r, s,n) has already been proved.

For the induction step, assunmye < Apax(r,s,n). We will apply the induction hypothesis to a
certain partition* € Par, ,,, that is obtained fromx by adding one outer corner cell, as follows. The
outer corners of: where we might add a new cell correspond to indices rn + sn such that,; is a
north edge and,.; is an east edge in the Eulerian tour far Addition of the new cell affects the tour
by replacinge; by an east edge and,; by a north edge. We therefore needt(e;) > s so that the
new cell will remain insideA, ;,,. To definen*, consider all the indices such thate; ande; ., have
the properties just mentioned. (There is at least one sughcen # A(r, s,n).) Among these indices,
choose one such that = fin(e; ) is as large as possible. If there are several choicestf@at maximize
fin(e;), choosei minimal with this property. It is clear that; must be the largest vertex i,,, and
e; is the first north edge of (1) arriving at this vertex. AccordinglyEiy, (v, M) = Noyt(vi, M) = 0.
Now let .* € Par, , , be the partition whose Eulerian tour is obtained fréroy changinge; to an east
edge anct; 4 into a north edge. We writé/* for M (u*), £* for £(u*), etc. The multigraph3/ and
M* differ only at vertices;, v; — r, v; — s, andv; — r — s. We haveN;, (v;, M*) = Niy(vi, M) — 1,
Eout(vi — r, M*) = Eou(v; — 1, M) + 1, etc.

By construction,u* € Par, ., is obtained fromu by the addition of one outer corner cell. By
induction hypothesis, we know thattot,. /,(1*) = ctot(M*). Writing A; = ctot,./,(1*) — ctot, /s(11)
and A, = ctot(M™*) — ctot(M), it now suffices to show thah; = A,. Let us compute each of these
guantities.

Given a vertex € Vy; and an integek, let

ESF(v) = Z x(ej is an E edge andin(e;) = v).
i<k

Let E=**(v) be the analogous quantity fp¥', and make analogous definitions f§f>*(v), etc. Consid-
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eration of the arrival words at — s andv; — r — s shows that

c:/s(,u*) — c;r/s(,u) = E;Hl*(vi —s)+ N;i*(vi —r—5)— N;Hl(vi —5)
= 0+ Niii(v,- —r—35)— N(iftﬂ(vi —r—s).

Similarly, consideration of the departure wordsat r andv; — r — s gives

CT_/S(N*) - C;/S(N) = Nyi(vi—r)+ Bt (v —r —s) — ESh(vi — 1)
= N(vy, M) =1+ ESH (v, —r —5) — E;Z(vl —7r—23).

Adding, we see that

Ay = Nin(vi, M) =14+ N2 (v; =7 — 8) — N2E(vi — 7 — 8) + ESL (v — 7 — 8) — ES'(v; — 7 — 5).

out in

Note that the partial tour consisting of edggs. . . , ¢; enters vertex; — r — s as often as it leaves that
vertex — unles®; — r» — s = 0, in which case there is one more exit than entry. In the ctmetation,
this fact can be written

N (vj—71—8)+ E= (v =7 —8) + x(vi =7 — s = 0) = N>

in out

(vi —r — )+ ES!

out(vi -r-—= S)'

We can use this relation to rewrite the preceding expredsiod, obtaining
Nin(v;, M)—1+Niii(vi—r—s)—N(ili(vi—r—s)—i—Ni%i(v,-—r—s)—Nfuit(v,-—r—s)—kx(vi—r—s =0)

= Nin(vi, M) =1+ Nin(v; =7 — 8, M) — Nout(vi — 7 — 8, M) + x(v; —r — s = 0).
To computeAy = ctot(M™*) — ctot (M), first note that

—(n — Ein(0,M*)) — (—(n — Ein(0,M))) = Ein(0, M) — Ein(0, M) = x(v; —r — s = 0).
Second, note that the only nonzero terms in

> [Bn(v, M*)Nin(v, M*) — Ein(v, M)Niy (v, M))]

veV UV«

come from the vertices = v; — s andv = v; — r — s. Whenv = v; — s, we get the term
(Ein(vi — S, M) — 1)(Nm(vi — S, M) -+ 1) — Ein('Ui — s,M)Nin(vi — S, M)

= Fn(vi —s,M)—1— Nip(v; — s, M) = Niy(v;, M) — 1 — Nyt (v; — 7 — s, M).

Whenv = v; — r — s, we get the term
(Bin(vi—r—8, M)+ 1)Niy(v;—r—5, M) — Ein(v; —r— 35, M)Nip(v;—r—8, M) = Nin(v;—r—s, M).
Therefore,

Ay = Nip(vi, M) =1+ Nin(v; — 7 — 8, M) — Nowt(v; — 7 — s, M) + x(v; =7 — s = 0) = Ay.
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5.5 Analysis of mid

In this subsection, we prove that

mid, s (1) = Amax(r, ,n) = > En(v, M) Nig(w, M)x(v > w) = mid(M),

’l)ﬂ,UEVJM

which will complete the proof of Theorem 16. We use induct@marea(n). The base casg =
A(r, s,n) has already been provegb(3). For the induction step, Igt' be the partition obtained fromas
in the last subsection. By induction hypothesisid,. /;(4*) = mid(M*). Writing Ay = mid,./,(1*) —
mid, /s(#) andAg = mid(M*) — mid(M), it suffices to show thaty; = A,.

Let us begin by computing\,. By maximality ofv;, v > v; — s implies Ei, (v, M) = Egu(v +
s,M)=0.So

mid(M) = Amax(r;5,m) + > (=Ei(v, M)Nin(w, M)).

v —S>V>Ww

A similar formula holds formid(M*). When computingdy = mid(M™*) — mid(M ), we get nonzero
contributions from the following summands.

e Whenv = w = v; — s, the summand fod/* is —(Ei,(v; — s, M) — 1)(Nin(vi — s, M) + 1)
while the summand folM is — Ei, (v; — s, M) Ny, (v; — s, M). Subtracting gives a contribution of
Nin(v; — 8, M) — Ein(v; — s, M) + 1 = Niy(v; — s, M) — Nip(v;, M) + 1.

e Whenv = v; — s andw < v, the summand fo* is —(Ei,(v; — s, M) — 1) Nip(w, M) and the
summand forM is — By, (v; — s, M) Ny, (w, M). Subtracting gives a contribution of;,, (w, M)
for eachw < v; — s.

e Whenv = v; — r — s andw < v, a similar calculation gives a contribution efN;,(w, M) for
eachw < wv; —r — s.

Adding these contributions and taking cancellation intccamt, we see that

Ag =1— Nig(vi, M) + > Nin(w, M). (16)
v;—r—s<w<v;—S$
The computation of\; is a bit more tedious. Recali§.1) that
mid,. /(1) = Zx(ej is an E edgeg;, is a N edge, and- s < fin(e;) — init(eg) < r).
i<k

An analogous formula holds fanid, /,(x*). For most choices of andk, the summand for will equal
the corresponding summand fef. The only summands that might not match occur whenk equals
i ori+ 1. Consider the various possible cases.

(A) Letj =iandk = i+ 1. This pair contribute$ to mid, /,() and1 to mid, /,(u*), giving a net
contribution ofl to A;.
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(B) Letj =i, sothak] is an east edge entering vertex- v;—r—sin £*. Consider the various indices
k >+ 1 such thak; (= e) is a north edge. We obtain a certain contributiomel, /, (1) that
does not appear fanid, /() sincee; is not an east edge 1 The net contribution td\, is

ZN;’tH* (—r<w—(v;—r—238)< ZN;u’tH v —2r—s<w<v—7r).
Replacingw (the initial vertex for the north edgg in question) byw + r (the final vertex for this

edge), we can write this as

ZNiiHl(w)X(Ui —r—s<w<).

w

(C) Letk =i+ 1, so thate; is a north edge leaving vertex = v; —r — s in £*. Consider the various
indices;j < i such thak] (= ¢;) is an east edge. Arguing as above, the net contributia;ts

ZEiff*(v)X(—s <v—(vi—r—38)<r)
= ZEiff(v)X(vi —r—2s<v<v;—s)

= ZE;& vi—r—8<v<u).

(D) Letk = i, so thate; is a north edge leaving vertex = v; — r in £. Consider the various indices
J < isuch thate; (= €}) is an east edge. This gives us a contributionntid,. /(42) but not to
mid,./,(11*). The net contribution ta\; is

ZEQ (—s<v—(v;—r)<r)

= ZEQ vi—r—8<v<)
= ZE(fu’t vi—r <v<v;+S)
= ZEofft v —r <v< ).

The last step follows since no vertex greater thahas an east edge leaving it.

(E) Letj =i+ 1, so thate; is an east edge entering vertex= v; — s in £. Consider the various
indicesk > i + 1 such thak;, (= ej) is a north edge. As in (D), the net contribution4qg is

ZN;&H (—r<w—(v;—8)<s)
= ZN;&“ vi—r—s<w< )
— ZN”“ vi—s<w<v+T)
= ZN”“ v — s <w < ).
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Adding the contributions (C) and (D) and noting the cantielia we get

ZEo<ult vi—r—s<v<uv—71)— EfJ<uZt( i)-

The subtracted term is zero by minimality ©f Similarly, adding the contributions (B) and (E) and
cancelling, we get

ZNii”l(w)X(”i —r—s<w<v—s)— N w).

w

Now N (v;) = Niy(vs, M) — 1 by minimality of 4. Our grand total so far is thus:
Ay = 1—i—Z:EO<uZt vi—r—s<v<v;—r) (17)

+ZN>Z+1 v =1 — 85 <w < v —5)+1— Niy(vy, M). (18)

Comparing this to the formula (16) faks, the terms on line (18) look promising, while those on line
(17) do not. However, we will show momentarily that

1+ZEO<u’t vi—r—s<v<uv—r)= ZNQ vi—r—s<w<wv—S). (29)

Using this equality above, together with the fact thgf’(w) = 0 = N,-“"!(w) for w in the indicated
range, we discover that

:ZNin(w,M)X(vi—r—s<w <wv;—8)+1— Niy(vi;, M) = Ag.
w

Thus we are reduced to verifying (19). Létbe the set of vertices in the multigraphv; — r — s, and

let B be the set of vertices v; — r — s. Consider the firsi — 1 edges off. The trail traced out by
these edges begins I (sincev; > r 4+ s) and ends inA (sincee; starts at vertex; — r). The edges
contributing to the sun}_,, N~ (w)x(v; — 7 — s < w < v; — s) are precisely the north edges before
e; that go from a vertex irB to a vertex inA. Call these “entering north edges.” The edges contributing
to the sumy_, E5% (v)x(v; —r — s < v < v; — r) are precisely the east edges beferéhat go from a
vertex in A to a vertex inB. Call these “exiting east edges.” As we follow the first 1 edges, we will
alternately encounter entering north edges and exitingeslges (plus other edges that do not concern
us). Since this part of the trail ends i, the last such edge we see must be an entering north edge.
Conclusion: There is one more entering north edge thamepatast edge. But this is precisely what (19)
is asserting. The proof of Theorem 16 is now complete.

5.6 Fermionic Formulas

. + -
Let Far(g, z,w,9) = X, cpary gl zmidess ()¢50 000 - By combining Theorem 14 and Theo-
rem 16, we obtain the identity

. + Nin(v,M) — 1
Fy — area(M) _mid(M), ctot(M) in\Y, pow
. ! ’ ’ Z H M)/>Nin(U>M)/ / (W/y)
TeTreeA(M) veVs w/y
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whereFEy, (v, M) = Ei,(v, M) — x(Ty = E), Nin(v,M)" = Nin(v, M) — x(T,, = N), andpow =
Nin(v, M)x (T, = E). Similarly, we have the dual identity

_ qarea(M) mid(M), ctot(M) in U M +NIH(U M) pow’
Fy=q z w Z H [ Eun (v, M), Nin(v, MY y/w(y/w) ,

TeTreeD(M) veVs

wherepow’ = Ei, (v, M)x(T, = N). Adding over allM € MGraph,. , ,,, we deduce two fermionic
formulas forF, s (¢, z, w, y):
Theorem 18.
U,M + Nin(v, M
rsn — Z qarea mld(M ctot(M Z H |: U )/ ];;((U J\;) :| (w/y)pow
MeMGraph,. ; ,, TeTreeA(M) veVyy ’ yom w/y

Z qarea( mld(M Ctot Z H |: in 2} M + Nln(v M) :| (y/w)pow"

/ /
(v N; M
MeMGraph,.; , TETreeD (M) vEVar , M), Nin ( ) y/w

6 Proof of Theorem 5

In this section, we will prove the crucial symmetry propefy; (¢, z, w,y) = Frsn(q, 2,y,w) by
constructing an involutiod on Par, ; ,, that fixes area anchid, ;, while interchanging:js and c;/s

Since areamid, ,, andctot, ;, are constant on the subsétsr,, (for M € MGraphns’n{, it suffices
to construct involutions/y; : Parp; — Parjs such thatc;f'/s(IM(p)) = ctot(M) — c:/s(,u) for all
w € Paryy.

6.1 Definition of the Involution

Fix M € MGraph,. ; , andu € Pary,. LetT = Tree(u) be the oriented tree leading frdirconstructed
from the initial letters of the arrival words" (1) in §4.5. Recall thafl;, = w"(u); gives the direction
(N or E) of the first arrival edge leading into vertexWe now us€l" to separate the nonzero vertices of
M into three disjoint classes.

1. Call a nonzero vertexrediff v + s & Vi orv + s € Vi anddistr (0, v + s) # distr(0,v) — 1.
2. Call a nonzero vertexblueiff v —r & Vy; orv —r € Vi anddisty (0, v —r) # distr(0,v) — 1.

3. Call a nonzero vertex greeniff neither of the previous conditions holds. This meang tha s
andv — r are vertices of\/, anddistr(0, v + s) = disty(0,v — r) = dist7(0,v) — 1.

A convenient way to visualize this situation is to emi#dh R? by placing vertex) at (0,0) and then
drawing the unique paths (consisting of north and east skegding to all the other vertices. Each vertex
v € Vi will appear in this picture at some poifit, y) in the plane withi, s(x,y) = v. One can check
that a nonzero vertex located at(z, y) is red iff (z — 1, y) is not in the treep is blue iff (z,y — 1) is
not in the tree; and is green iff both(x — 1,y) and(z,y — 1) are vertices of this tree.

Now letv be a green vertex. Then the unique patiifrom 0 to v goes through eithey + s or
v — r just before reaching. Suppose we modif{" by replacingT, by the opposite letter. It is easy
to check that the result is another oriented fféesuch that all vertices are assigned the same color as
before. More generally, if we modify by simultaneously toggling the edgés at an arbitrary subset of
the green vertices, the result is another ffée TreeA (M) with the same color assignment as before.
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Figure 4: Trees associatedgaand ().

Now we are ready to define the mag. First, definereversal mapsev : W(E*N?) — W (E*N?)
andrev’ : W(E*N?) — W (E*N?) by setting

/
rev(wiws ... Wetp) = Watp - - - Wol1, rev (W waws . . . Watp) = W1Wqip - - - WW2.

Note thatrev reverses an entire binary word, while/’ reverses the letters in a word following the initial
letter. Obviouslyyev is an involution oni¥’ (E*N®), while rev’ is an involution on the setd’z(E*N?)
and Wy (E*N®). To computel,/(u), first find T and the vertex colorings as above. Replacéy)

by rev(w (1)) at every green vertex, and replacav’(u) by rev/(w”(u)) at every other vertex of
V. The initial letters of the new arrival words determine a riese7”, as argued above. Therefore,
Theorem 14 guarantees that there is a unique partitipfy:) € Pary, associated to the new arrival
words. Moreover, since the coloring of the vertices re@atw7” is the same as the coloring relative
to T, it is immediate that/y; is an involution. Definel to be the involution orPar, ,, obtained by
assembling the various mapg .

Example 19. Let = (12,12,10,8,7,4,1,1,1) € Pars 5. To computel(y), we first drawBdy (x)
(see Figure 1) and the multigrapli (1) (see Figure 2). As in Example 10, we find that the arrival words

for p are:
w' = EE, w' = EEE, w?> = EEE, w® = NEEN, w* = NENNE,

wS = EN, w% = EN, w" = NN, v® = E, w'% = N.

Looking at the intial letters of these arrival words, we dithe treeT” = Tree(u) in R? as shown on the
left in Figure 4. The red vertices are 3, 4, 7, and 10; the blrces are 1, 2, and 6; the green vertices
are 5 and 8. We therefore fully reversé andw®, and reverse all but the first letter of the remaining
words. The new arrival words are

w’ = EE, w' = EEE, w?* = EEE, w> = NNEE, w* = NENNE,

wS = NE, w® = EN, w" = NN, w® = E, w'° = N.

The associated tree appears on the right in Figure 4. Degdld@se arrival words as in Example 12, we
find thatZ(x) = (12,10,10,8,7,6,1,1,1).
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6.2 Analysis ofc,

To finish the proof of Theorem 5, we need only verify thg}s(IM(u)) = ctot(M) — cjf/s(u) for all
M € MGraph,. ,,, and ally € Pary,. Fix M andp, and letT” = Tree(u). Recall thatc:'/s(,u) =
> vevy, v(w”(u)), and similarly forcj/s(IM(u)). Now, it is easy to check that

inv(rev(w)) = ab—inv(w) for all w € W(E*N?);
inv(rev/(w)) =ab—inv(w) +b forallw € Wg(E*N®);
inv(rev'(w)) =ab—inv(w) —a forallw € Wy(E*N®).

Furthermore, it is clear that, = w"(u); = N if v is a red vertex, whilg;,, = w’(u); = Fifvisa
blue vertex onw = 0. From these remarks and the definition/gf, it follows that

¢f () = Y Ein(v, M)Nig(0, M) + Y Nin(v, M) =Y Ein(v, M) = ¢}, (u).

veVr bluev redv

On the other hand,

ctot(M) = > Ein(v, M)Nin(v, M) — (n — Ein (0, M)).

veVr

Comparing these expressions, we see that everything retutiee following lemma.

Lemma 20.
Ewn(0,M) + ) Ew(v,M) = ) Nu(v,M)=n.
red v blue v
Proof. Let (vg = 0,v1,...,vmisn = 0) be the sequence of vertices in the Eulerian tounfoand let
(e1,...,emtsn) be the sequence of edges in this tour. Define- disty(0,v;) for 0 < i < (r + s)n.

We make three claims about these distances.
(A) If e; belongs to the edge set @for if e; enters a green vertex @f, thend; = d; 1 + 1.
(B) If e; is an east edge entering vertenr a red vertex of’, thend, = d;_1 + 1 — (r + s).
(C) If ¢; is a north edge entering a blue vertexigfthend;, = d;—1 + 1+ (r + s).

Claim (A) is clear; the other two claims will be proved in a memh Denote the number of edges
in the tour satisfying the hypotheses of (A), (B), and (C)hy ni, andns, respectively. Clearly,
n1 = Ein(0, M)+ aqo Ein(v, M) andng = > .6, Nin(v, M). Thus we must prove that —no = n.
Every edge;; belongs to exactly one of the categories (A), (B), or (C), laedceny+ni+ng = (r+s)n.
Furthermoref) = d,pisn = z;‘gjsn(di — d;—1). Adding up the contributions from the three types of
edges, we get

no+ni(l—r—s)+ny(l+r+s)=0.

It follows that (r + s)(n1 — n2) = ng + n1 + ng = (r + s)n, and hencer; — ny = n.

Claims (B) and (C) follow from a topological argument illcetied in Figure 5 in the case, s) =
(4,3). We draw the vertices af/(x) and the edges of = Tree(u) between the lines + y = 0 and
x4y =r+s,as explained ig4.3. We view this region as a cylinder obtained by identidy&ach point
(a,b) on the linex + y = r + s with the point(a — r,b — s) on the linex + y = 0. For each vertex
v € V), there is a unique path ifi from 0 to v. We define thevinding number ot relative to7 to be

23



the number of times this path “wraps around” the cylinderlbyping from the liner + y = r + s back
to the linex + y = 0. Denote this number byind(v,T"). We allow a nonzero vertexthat is divisible
by r + s to have two winding numbers: namely, the copyain the linex 4+ y = 0 has winding number
one greater than the copy ofon the linex +y = r + s. See Figure 5. We now make the following
observations. (In the following discussion,rit+ s divideswv;_; or v;, the location ofe; in the picture
determines, in the obvious way, which winding numbers to)use

(i) Supposew € Vs and there are two trails frofito w in M of lengthsm, andms. Thenr + s
dividesm; — mo. For suppose the first trail takes north edges and; east edges, while the
second trail takes, north edges ané, east edges. Thewyr — bys = w = asr — bys, SO that
(a1 — ag)r = (by — by)s. Sincelem(r, s) = rs, it follows thata, — ay = ks andb; — by = kr for
some integek > 0. Som; —mg = (a1 + b1) — (a2 + b2) = k(r + s).

(i) Supposev € V), and writedist7 (0, v) = ¢(r + s) + v where0 < u < r + s. If v lies below the
line x+y = r+s, thenwind (v, T') = q. If vlies onthe linec+y = r+s, thenwind(v, T') = g—1.
This follows from the definition of winding number and thetf#ltat it always takes exactly+ s
steps to go from the ling + y = 0 to the linex +y = + s.

(i) For eachi, wind(v;, T) — wind(v;—1,T) € {—1,0,1}. For, it is geometrically evident from the
picture ofT" on the cylinder that there is no way for the winding numberttarge by two or more
when following a single edge a¥/.

(iv) If wind(v;,T") = wind(v;—1,T) ande; is not inT', thenw; is a green vertex. For it follows easily
from (i) thatdist7 (0, v;—1) = dist7 (0, v;) — 1 in this situation.

(v) Suppose; is not in the edge set df, andw; is either zero or a red vertex. Thepis an east
edge, and it readily follows from (iii) and (iv) thatind(v;, T) = wind(v;—1,7") — 1. Consider
the following two directed paths i/ from 0 to v;. The first path is the unique pathifrom 0
to v;, of lengthd;. The second path is the pathThfrom 0 to v;_;, followed by the edge;; the
length of this path igl;_; + 1. Using (i) and (ii), we easily deduce thét=d;_1 + 1 — (r + s).
Thus claim (B) holds.

(vi) Supposez; is not in the edge set df, andv; is a blue vertex. Theeg; is a north edge, and it readily
follows from (iii) and (iv) thatwind(v;, 7)) = wind(v;—1,7T) + 1. Consider the following two
directed paths id/ from 0 to v;. The first path is the unique pathThfrom 0 to v;, of lengthd;.
The second path is the pathThfrom 0 to v;_1, followed by the edge;; the length of this path is
d;—1 + 1. Using (i) and (ii), we easily deduce th@t= d;_; + 1+ (r + s). Thus claim (C) holds.

O

6.3 The Combinatorial Homotopy

For each critical rationat/s, we now have an involutiod = I, that switcheshjf/S and h;/s while
preserving area. By composing these involutions, we catiya® bijections proving the equidistribution
of any two statistics’ andhi',. For example, Figure 6 shows how these involutions act orrticpkar
object as the parameter valueyoes from0 to oc.
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X+y=7

X+y=0

21

winding number 2

winding number 1

winding number 0

Figure 5: Proof of claims (B) and (C).

7 Connection tog, t-Catalan Numbers

Definition 21. Letr, s, n be positive integers witged(r, s) = 1. Therational-slopeg, t-Catalan num-
bersare the polynomials
Cr,s,n(‘]a t) = Z qareac(u) th:r/s(u)-

pePary s n

Whenr/s is an integer (i.e.s = 1), one can show that this definition agrees with the combiteto

interpretation of the, t-Catalan numbe@(f) (g, t) first proposed by Mark Haiman. More specifically, if
P is anr/1-Dyck path of ordem, then the statisticarea(P) anddinv,.(P) defined in [12] are respec-
tively equal toarea‘(y) andh; (1), whereBdy(n) = P (cf. Lemma 6.3.3 in [7]). We now present an
extension of a fundamental conjecture about the combiiahtgr-Catalan numbers.

Conjecture 22. For all r, s, n as above, we have theint symmetry property

Cr,s,n(‘]a t) = Cr,s,n(ta Q)-

At present, this conjecture has only been provedrfoe s = 1. More specifically, Garsia and
Haglund proved thaf’, ; ,,(¢, ) is the Hilbert series for the doubly gradég-module of diagonal har-
monic alternants [4, 5]. That Hilbert series is manifesfiyngetric ing and¢, whence the result. Even
whenr = s = 1, it is an open problem to construct an explicit bijectionfur,  ,, that interchanges
area® andhj/s. On the other hand, for allandn, there are known bijections dfar, ; ,, that senchrea®
to hjf/s or vice versa [12]. These maps prove tivevariatesymmetryC. ; (¢, 1) = C;1,0(1, q).

There is a remarkable connection between the symmetry @angegiven here and the equidistribu-
tion property in Theorem 4. More precisely, we now show tleatain cases of the theorem follow easily

from corresponding cases of the conjecture.

Theorem 23. Fix a positive integer- > 1. If C;.1 ,(q,t) = C;.1,4(t, q) for all sufficiently largen, then
the statistice/(11) andh;" () are equidistributed oiPar(k) for all & > 0.
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Figure 6: Example of the combinatorial homotopy.

n>>k

IRR

A bounce path

Figure 7: Bouncing through a large triangle.
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Proof. For simplicity, we only consider the case= 1. Write C),(q,t) for C11,(q,t). The proof
uses an alternate combinatorial interpretation of¢heCatalan number due originally to Haglund [6].
Giveny € Pary 1 5, definebounce(u) by the following construction. Draw the diagradg; ; ,, (1) in
the triangleA; ; ,,, as usual. A ball starts 40,0) and moves nortlk, units until it touches either the
southwest corner of a unit squaredp, , ,, (1) or the top boundary ling = n. The ball then bounces
eastkg units to(ko, ko). If kg < n, the ball repeats this process, moving ndrunits until it touches the
southwest corner of a square0br the liney = n, and then moving ea&t units to(ky + k1, ko + k1).
This bouncing process continues, generating a sequéice, .. ., ks), until the ball finally reaches
(n,n). Haglund’'sbounce statistidés given by either of the formulas

bounce(u) = sz’l = Z(n — k).

i=0 i=0

(Note that the bounce statistic depends both.@md onn.)

The hypothesis’,, (¢,t) = C,(t,q) implies that there is a bijection dbar, ; ,, that interchanges
area® and hi". On the other hand, it is known [12] that there is a bijectionRar; 1, such that
(area’, hi") maps to(bounce, area®). Composing these bijections, we get a bijection Pary 1, —
Pary 1 ,, such thatarea®, h]") maps to(area‘, bounce).

Fix £ > 0, and suppose > 2k. On one hand, this choice afensures thaPar(k) C Pary ;. On
the other hand, this choice afguarantees thatounce(u) = ¢(p) for u € Par(k), because the bouncing
ball will reach (n,n) after only two bounces. See Figure 7 for an example. It falldhato restricts
to a bijection onPar (k) that sends (1) to ¢() = hg (). Thus we have a new bijective proof of the
equidistribution ofh]” andh{ (depending, of course, on the unknown bijection interchangrea® and
hi).

Whenr > 1, an analogous proof can be given using the “higher-ordeuhbe statistics introduced
in [12]. The key point is that these bounce statistics alstuee to/(u) whenn is sufficiently large
compared tgu|. O
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