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Abstract

This article investigates a remarkable generalization of the generating function that enumerates
partitions by area and number of parts. This generating function is given by the infinite product
∏

i≥1
1/(1 − tqi). We give uncountably many new combinatorial interpretations of this infinite

product involving partition statistics that arose originally in the context of Hilbert schemes. We
construct explicit bijections proving that all of these statistics are equidistributed with the length
statistic on partitions ofn. Our bijections employ various combinatorial constructions involving
cylindrical lattice paths, Eulerian tours on directed multigraphs, and oriented trees.

1 Introduction

We begin by recalling one of the most famous classical results in the theory of partitions. Apartition of
an integern ≥ 0 is a weakly decreasing sequence of positive integers whose sum isn. Given a partition
λ = (λ1 ≥ λ2 ≥ · · · ≥ λt), theareaof λ is |λ| = λ1 + · · ·+λt. Thelengthof λ is ℓ(λ) = t, the number
of nonzero parts inλ. Thediagramof λ is the set

dg(λ) = {(i, j) ∈ N × N : 1 ≤ i ≤ ℓ(λ), 1 ≤ j ≤ λi}.

We visualizedg(λ) as an array ofℓ(λ) rows of boxes, left-justified, withλi boxes in thei’th row from
the top. Thetransposeof λ is the partitionλ′ whose diagram is{(j, i) : (i, j) ∈ dg(λ)}, so thatλ′

j is the
number of boxes in thej’th column ofdg(λ). Let Par(n) denote the set of partitions ofn, and letPar
denote the set of all partitions.

Theorem 1.
∑

λ∈Par

q|λ|tℓ(λ) =
∞
∏

i=1

1

1 − tqi
=

∑

µ∈Par

q|µ|tµ1 . (1)

Proof. The infinite product appearing in the theorem can be written

∞
∏

i=1

∞
∑

ki=0

tkiqiki
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by expanding1/(1− tqi) as a formal geometric series inQ[[q, t]]. We obtain a typical term in the infinite
product by choosing a monomialtkiqiki from each factor and multiplying these monomials together.
Such a choice of monomials is uniquely encoded by a partitionλ consisting ofki parts equal toi, for
eachi ≥ 1. Clearly

∏

i tkiqiki = q|λ|tℓ(λ). Adding up all these terms gives the first equation in the
theorem. Settingµ = λ′ and noting that|µ| = |λ| andµ1 = ℓ(λ), we obtain the second part of the
theorem.

This paper investigates a surprising generalization of this result, which we now describe. For each
positive real numberx, we will introduce two statistics on partitions, denotedh+

x and h−
x . First we

need some preliminary definitions. Given a partitionλ and a cellc = (i, j) ∈ dg(λ), thearm of c is
a(c) = λi − j, which is the number of cells to the right ofc in its row. Theleg of c is l(c) = λ′

j − i,
which is the number of cells belowc in its column. For any logical statementP , let χ(P ) = 1 if P is
true andχ(P ) = 0 if P is false. For each realx such that0 ≤ x < ∞, define

h+
x (λ) =

∑

c∈dg(λ)

χ

(

a(c)

l(c) + 1
≤ x <

a(c) + 1

l(c)

)

(λ ∈ Par).

For allx such that0 < x ≤ ∞, define

h−
x (λ) =

∑

c∈dg(λ)

χ

(

a(c)

l(c) + 1
< x ≤

a(c) + 1

l(c)

)

(λ ∈ Par).

In these formulas, a fraction with a zero denominator is interpreted as+∞.

Example 2. If λ = (4, 2, 2), thenh+
π (λ) = 4, h+

1 (λ) = 7, h−
1 (λ) = 5, h−

0.6(λ) = 4, h+
0 (λ) = 3 = ℓ(λ),

andh−
∞(λ) = 4 = λ1.

Note that a cellc ∈ dg(λ) contributes toh+
0 (λ) iff a(c) = 0 iff c is the rightmost cell in its row. The

number of such cells isℓ(λ), soh+
0 (λ) = ℓ(λ). Similarly, c contributes toh−

∞(λ) iff l(c) = 0 iff c is
the lowest cell in its column. The number of such cells isλ1, soh−

∞(λ) = λ1. More generally, note that
every cellc = (i, j) ∈ dg(λ) has an associated cellc′ = (j, i) ∈ dg(λ′) which satisfiesa(c′) = l(c) and
l(c′) = a(c). It follows thath±

x (λ) = h∓
1/x(λ′) for all x and allλ.

We can now state the generalized partition theorem.

Theorem 3. For all real x ∈ [0,∞),

∑

λ∈Par

q|λ|th
+
x (λ) =

∞
∏

i=1

1

1 − tqi
. (2)

For all x ∈ (0,∞],
∑

λ∈Par

q|λ|th
−

x (λ) =

∞
∏

i=1

1

1 − tqi
. (3)

The classical Theorem 1 corresponds to the casesx = 0 andx = ∞ in this theorem.
Theorem 3 (forx irrational) seems to have been first discovered by Mark Haiman, although it does

not appear explicitly in the literature [8]. Haiman found the following geometric proof of the theorem
using results of Ellingsrud and Strømme on the Hilbert scheme of points in the plane [2, 3]. Ellingsrud
and Strømme gave explicit descriptions of the Białynicki-Birula cells [1] associated to the action of a
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two-dimensional complex torusT = (C∗)2 on the Hilbert scheme. In [9], Haiman explicitly computed a
system of local parameters at eachT -fixed point that areT -eigenfunctions and are nicely indexed com-
binatorially. The choice of the “slope” parameterx 6∈ Q corresponds to the choice of a one-parameter
torus inT . The dimensions of the Białynicki-Birula cells for this one-parameter torus are then distributed
according to the partition statistich+

x (which equalsh−
x for x irrational). On the other hand, these dimen-

sions are always distributed according to the Betti numbersof the Hilbert scheme. Thus the distribution
of h+

x is independent ofx. This completes Haiman’s geometric proof of the theorem [8]. Some related
work involving the statistich+

1 may be found in [10, 11].
Our goal in this document is to give a purely combinatorial proof of Theorem 3, using no algebraic

geometry. The main steps in our proof are as follows:

1. We show that Theorem 3 is a consequence of the following result.

Theorem 4. For all positiverationalnumbersx and all integersn ≥ 0,

∑

λ∈Par(n)

th
+
x (λ) =

∑

λ∈Par(n)

th
−

x (λ). (4)

2. We fix a positive rational numberx = r/s and define new statisticsmidx, c+
x , andc−x on partitions.

These statistics have the property thatmidx + c+
x = h+

x andmidx + c−x = h−
x . We will consider

generating functions

Fr,s,n(q, z, w, y) =
∑

λ

q|λ|zmidr/s(λ)w
c+

r/s
(λ)

y
c−
r/s

(λ)

where the sum extends over partitionsλ contained in a right triangle of sizern by sn. We will see
that Theorem 4 is implied by the following symmetry property.

Theorem 5. Supposer ands are relatively prime positive integers andn ≥ 0. Then

Fr,s,n(q, z, w, y) = Fr,s,n(q, z, y, w). (5)

3. We give a bijective proof of Theorem 5. The first step is to associate to each partitionλ a certain di-
rected multigraphM(λ) and Eulerian tourE(λ), following a construction of Jonas Sjöstrand [13].
We show that the statistics|λ|, midr/s(λ), andc+(λ) + c−(λ) depend only on the multigraph
M(λ), not on the Eulerian tourE(λ). We then construct an involution that modifies the Eulerian
tourE(λ) in such a way that the statisticsc+ andc− are interchanged. This induces a map on parti-
tions that switchesc+ andc− while fixing the area and mid statistics. The well-known connection
between Eulerian tours and oriented trees (cf.§5.6 of [14]) plays a key role in constructing these
maps.

Our proof of Theorem 3 will be completely bijective. More precisely, for anyx, y ∈ [0,∞], any
δ, ǫ ∈ {+,−}, and anyn ≥ 0, we will construct an explicit bijection onPar(n) that sends the statistichδ

x

to the statistichǫ
y. (Here and below, we exclude the two choices(x, δ) = (0,−) and(x, δ) = (∞,+).)

This bijection is essentially a composition of finitely manybijections that switchh+
r andh−

r at each
“critical” rational numberr betweenx andy. (This terminology is explained in the next section.) The
net result is a kind of “combinatorial homotopy” that slowlydeforms the original partition into its image
as the parameter value goes fromx to y. See Figure 6 for an example.
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The rest of the paper is organized as follows. We show that Theorem 4 implies Theorem 3 in Sec-
tion 2. We show that Theorem 5 implies Theorem 4 in Section 3. Section 4 describes various combinato-
rial encodings of partitions in terms of lattice paths, Eulerian tours on directed multigraphs, and indexed
collections of binary words. Section 5 derives new formulasfor our partition statistics in terms of these
encodings. Section 6 defines the involution used to prove Theorem 5. Section 6.3 contains an example
of the “combinatorial homotopy” mentioned above. Section 7concludes by describing an intriguing link
between Theorem 3 and an unsolved problem involving the Garsia-Haimanq, t-Catalan numbers.

2 Reduction to Critical Rationals

Proposition 6. Theorem 4 implies Theorem 3.

Proof. Forx ∈ [0,∞] andδ ∈ {+,−}, define

Hδ
x(n) =

∑

λ∈Par(n)

th
δ
x(λ) ∈ N[t].

We will show thatHδ
x(n) is independent ofx andδ. In particular, this yields

Hδ
x(n) = H+

0 (n) =
∑

λ∈Par(n)

tℓ(λ)

for all n, x, andδ. Theorem 3 follows immediately by multiplying byqn, adding over alln ≥ 0, and
applying Theorem 1.

Fix an integern ≥ 0. We say that a positive rational numberr is acritical rational for n iff there
exists a partitionµ ∈ Par(n) and a cellc ∈ dg(µ) such that a(c)

l(c)+1 = r or a(c)+1
l(c) = r. By convention,

0 and+∞ are also considered to be critical rationals for everyn. Let Crit(n) denote the set of critical
rational numbers forn; evidently,Crit(n) is finite. For example,

Crit(5) = {0, 1/4, 1/3, 1/2, 2/3, 1, 3/2, 2, 3, 4, +∞}.

(More generally, it is easy to check thatCrit(0) = {0,∞} andCrit(n) = Crit(n − 1) ∪ {a/(n − a) :
0 < a < n} for n ≥ 1.) Write Crit(n) = {0 = r0 < r1 < · · · < rk = +∞}, wherek depends onn.
Define open intervalsIj = (rj−1, rj) for 1 ≤ j ≤ k. Then[0,∞] decomposes into the disjoint union

[0,∞] = I1 ∪ I2 ∪ · · · ∪ Ik ∪ Crit(n).

Let x, x′ be two elements of the same intervalIj , and letδ, δ′ ∈ {+,−}. Supposeλ is any partition of
n. Since there are no critical rational numbers betweenx andx′ (inclusive), it is immediate from the
definitions of the statistics that a cellc ∈ dg(λ) contributes tohδ

x(λ) iff c contributes tohδ′

x′(λ). Thus

th
δ
x(λ) = th

δ′

x′
(λ). Adding over allλ, we see that for allx, x′ ∈ Ij,

Hδ
x(n) = Hδ′

x′(n) ∈ N[t]. (6)

A similar argument shows that for allx ∈ Ij ,

H+
rj−1

(n) = Hδ
x = H−

rj
(n) ∀n ≥ 0. (7)

On the other hand, the assumed equations (4) imply in particular that

H+
rj

(n) = H−
rj

(n) (n ≥ 0, 1 ≤ j ≤ k − 1). (8)

Equations (6), (7), and (8) clearly imply thatHδ
x(n) is independent ofx andδ.
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Supposex < x′ andδ, δ′ ∈ {+,−} are given. Suppose further that we have bijective proofs of (8)
for each critical rationalrj . Then we can construct a bijective proof of the identityHδ

x(n) = Hδ′

x′(n)
by simply chaining together the bijections used at each critical rational lying betweenx andx′. (An
example of this process is given in§6.3.) Thus a bijective proof of Theorem 4 at all critical rationals
leads immediately to a bijective proof of Theorem 3.

3 Reduction to Symmetry Property

In this section, we prove that Theorem 5 implies Theorem 4. Wemust first define the partition statistics
midx, c+

x , andc−x and the generating functionFr,s,n appearing in the statement of Theorem 5. Given a
positive rational numberx, write x = r/s wherer ands are positive integers withgcd(r, s) = 1. For
eachλ ∈ Par, define themiddlestatistic, thecritical-plus statistic, thecritical-minusstatistic, and the
critical-total statistic forλ as follows:

midr/s(λ) =
∑

c∈dg(λ)

χ(sa(c) − rl(c) ∈ (−s,+r))

c+
r/s(λ) =

∑

c∈dg(λ)

χ(sa(c) − rl(c) = +r)

c−r/s(λ) =
∑

c∈dg(λ)

χ(sa(c) − rl(c) = −s)

ctotr/s(λ) = c+
r/s(λ) + c−r/s(λ).

By settingx = r/s in the definitions ofh+
x andh−

x and clearing fractions, we see that

h+
r/s(λ) =

∑

c∈dg(λ)

χ(sa(c) − rl(c) ∈ (−s,+r]) = midr/s(λ) + c+
r/s(λ); (9)

h−
r/s(λ) =

∑

c∈dg(λ)

χ(sa(c) − rl(c) ∈ [−s,+r)) = midr/s(λ) + c−r/s(λ). (10)

Example 7. Let r = 3, s = 2, andλ = (12, 12, 10, 8, 7, 4, 1, 1, 1). Then|λ| = 56, mid3/2(λ) = 29,
c+
3/2(λ) = 6, c−3/2(λ) = 3, ctot3/2(λ) = 9, h+

3/2(λ) = 35, h−
3/2(λ) = 32.

Next we defineParr,s,n andFr,s,n. For µ ∈ Par, let dgr,s,n(µ) be the diagram ofµ (regarded as
a collection of unit squares inR2) translated so that the northwest corner of the northwesternmost cell
hasx, y-coordinates(0, sn). Let ∆r,s,n be the closed triangle inR2 with vertices(0, 0), (0, sn), and
(rn, sn). Define

Parr,s,n = {µ ∈ Par : dgr,s,n(µ) ⊆ ∆r,s,n}.

For example, Figure 1 shows that(12, 12, 10, 8, 7, 4, 1, 1, 1) ∈ Par3,2,5. Finally, define

Fr,s,n(q, z, w, y) =
∑

λ∈Parr,s,n

q|λ|zmidr/s(λ)w
c+

r/s
(λ)

y
c−
r/s

(λ)
.

Theorem 5 asserts thatFr,s,n(q, z, w, y) = Fr,s,n(q, z, y, w).

Proposition 8. Theorem 5 implies Theorem 4.
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(0,10)

(0,0)

(15,10)

Figure 1: A partition diagram inscribed in a triangle.

Proof. We must prove thath+
x and h−

x are equidistributed onPar(m) for all positive rationalx and
all integersm ≥ 0. Supposex = r/s > 0 and m ≥ 0 are given. Choosen large enough that
Par(m) ⊆ Parr,s,n. (For instance, it suffices to choosen ≥ (r + s)m/rs.) In the assumed equation
Fr,s,n(q, z, w, y) = Fr,s,n(q, z, y, w), setz = wy and extract the coefficient ofqm. Using (9) and (10),
we obtain the formula

∑

λ∈Par(m)

w
h+

r/s
(λ)

y
h−

r/s
(λ)

=
∑

λ∈Par(m)

w
h−

r/s
(λ)

y
h+

r/s
(λ)

.

To complete the proof, just setw = t andy = 1.

Thus all the theorems in the introduction follow from Theorem 5. Indeed, Theorem 5 is much
stronger than the others since it shows thath+

r/s andh−
r/s are jointly symmetric onPar(m), and it also

gives information about the4-variate distribution of area,midr/s, c+
r/s, andc−r/s on the collection of

partitions contained in anyrn × sn triangle. In the coming sections, we will prove Theorem 5 by
constructing involutions on the setsParr,s,n that preserve area andmidr/s while interchangingc+

r/s and

c−r/s. We will also prove explicit fermionic formulas giving the joint distribution of the four statistics on
these collections of partitions.

4 Combinatorial Descriptions of Partitions

To prove Theorem 5, it will be helpful to introduce ways of encoding partitions inParr,s,n using lattice
paths, Eulerian tours on directed multigraphs, and families of binary words. We discuss these encodings
in this section. Our immediate goal is to prove the structural results given below in Theorem 14 and its
corollary. Throughout this section, we fix positive integers r, s, n such thatgcd(r, s) = 1.

4.1 Preliminary Definitions

A word is an ordered sequence of letters drawn from some alphabet. LetW (EaN b) be the set of all words
that consist ofa copies of the letterE andb copies of the letterN . We can view wordsw ∈ W (EaN b) as
lattice pathsfrom (0, 0) to (a, b) by interpretingE as a unit east step andN as a unit north step. A word

6



w ∈ W (ErnN sn) is called anr/s-Dyck word of ordern iff every point (x, y) on the associated lattice
path satisfiesy ≥ (s/r)x. This means that the lattice path lies completely within thetriangle∆r,s,n.

A directed graphis an ordered pairG = (VG, EG), whereVG is a set ofverticesandEG ⊆ VG ×VG

is a set of(directed) edges. Given an edgee = (v,w), we setinit(e) = v andfin(e) = w. A multigraph
is a pairM = (VM , EM ), whereVM is a set of vertices andEM is now amultisetof directed edges. This
means that each edge occurs inEM with a certain multiplicity. Graphs are special kinds of multigraphs
in which each edge has multiplicity one. Theindegreeof a vertexv ∈ VM , denotedindeg(v), is the
number of edgese ∈ EM such thatfin(e) = v (counted with multiplicities). Theoutdegreeof a vertex
v ∈ VM , denotedoutdeg(v), is the number of edgese ∈ EM such thatinit(e) = v. A multigraphM is
balancediff indeg(v) = outdeg(v) for all v ∈ VM . An isolated vertexof M is a vertexv ∈ VM such
that init(e) 6= v 6= fin(e) for every edgee.

For k ≥ 1, a trail of lengthk in M = (VM , EM ) is a sequenceP = (v0, v1, . . . , vk) such that each
vi ∈ VM and(vi−1, vi) ∈ EM for 1 ≤ i ≤ k. We say that the trailstartsat v0 andendsat vk. A trail is
closediff v0 = vk. A path is a trail in which all vertices are distinct, except that we allow v0 = vk. A
cycleis a closed path. Theedge multisetof a trail is the multisetE(P ) = {(vi−1, vi) : 1 ≤ i ≤ k}. An
Eulerian tourof M is a closed trail inM whose edge multiset is preciselyEM . An oriented treein M
leading from the rootv0 is a graphT = (VT , ET ) such thatVT ⊆ VM , ET is a subset of the multisetEM ,
v0 ∈ VT , and for eachv 6= v0 in VT there exists a unique path inT from v0 to v. We writedistT (v0, v) to
denote the length of this unique path. The treeT is said tospanM iff VT = VM . Oriented trees leading
to the rootv0 are defined analogously. A multigraphM is connectediff for any two distinct vertices
v,w ∈ VM , there exists a path inM from v to w. It is well-known that a multigraphM with no isolated
vertices has an Eulerian tour iffM is connected and balanced [14].

4.2 Lattice Path Formulation

We can represent a partitionµ ∈ Parr,s,n as anr/s-Dyck path of ordern by “following the frontier ofµ.”
More specifically, inscribe the diagram ofµ in the triangle∆r,s,n as shown in Figure 1. Define the lattice
pathBdy(µ) ∈ W (ErnN sn) by taking north and east steps from(0, 0) to (rn, sn) along the southeast
boundary ofdgr,s,n(µ). For example, the boundary of the partitionµ = (12, 12, 10, 8, 7, 4, 1, 1, 1) ∈
Par3,2,5 is shown as a thick shaded line in Figure 1. We have

Bdy(µ) = NENNNEEENEEENENEENEENNEEE∈ W (E15N10).

DefineVBdy(µ) to be the sequence of lattice points inR2 visited by the pathBdy(µ). More explicitly,

VBdy(µ) = ((x0, y0), (x1, y1), . . . , (xrn+sn, yrn+sn))

where(x0, y0) = (0, 0), (xi, yi) = (xi−1 + 1, yi−1) if Bdy(µ)i = E, and(xi, yi) = (xi−1, yi−1 + 1)
if Bdy(µ)i = N . Note that(xrn+sn, yrn+sn) = (rn, sn), andyi ≥ (s/r)xi for all i sincedgr,s,n(µ) ⊆
∆r,s,n. Clearly,µ is uniquely recoverable from eitherBdy(µ) or VBdy(µ).

4.3 Eulerian Tour Formulation

The next step is to encode each partitionµ ∈ Parr,s,n as an Eulerian tourE(µ) on a certain multi-
graphM(µ) = (VM (µ), EM (µ)), following a construction of Jonas Sjöstrand [13]. To define these
objects, we first introduce ther/s-diagonal mapdr,s : R2 → R given bydr,s(x, y) = ry − sx. Write
VBdy(µ) = ((x0, y0), . . . , (xrn+sn, yrn+sn)) as above. Now defineE(µ) = (v0, v1, . . . , vrn+sn), where
vi = dr,s(xi, yi). (By the definition ofVBdy(µ), it is equivalent to setv0 = 0, vi = vi−1 + r if
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Bdy(µ)i = N , andvi = vi−1 − s if Bdy(µ)i = E.) SinceBdy(µ) is anr/s-Dyck path, it follows that
v0 = vrn+sn = 0 andvi ≥ 0 for all i. Finally, define the multigraphM(µ) by settingVM (µ) = {vi :
0 ≤ i ≤ rn + sn} and lettingEM (µ) be the edge multisetE(E(µ)) = {(vi−1, vi) : 1 ≤ i ≤ rn + sn}.
It is automatic from this definition thatE(µ) is an Eulerian tour onM(µ) starting and ending at0.

Example 9. Givenµ = (12, 12, 10, 8, 7, 4, 1, 1, 1) ∈ Par3,2,5. Using Figure 1, we compute:

E(µ) = (0, 3, 1, 4, 7, 10, 8, 6, 4, 7, 5, 3, 1, 4, 2, 5, 3, 1, 4, 2, 0, 3, 6, 4, 2, 0).

The multigraphM(µ) has vertex set{0, 1, 2, 3, 4, 5, 6, 7, 8, 10} and edge multiset

{(0, 3) × 2, (1, 4) × 3, (2, 5) × 1, (3, 6) × 1, (4, 7) × 2, (7, 10) × 1,

(2, 0) × 2, (3, 1) × 3, (4, 2) × 3, (5, 3) × 2, (6, 4) × 2, (7, 5) × 1, (8, 6) × 1, (10, 8) × 1}.

The notation(v, v′) × k means that the edge(v, v′) occurs with multiplicityk in the given multiset.

The multigraphM(µ) has the following properties. (1) The vertex setVM (µ) contains0 and is a
finite subset ofN. (2) M(µ) has exactlyrn+ sn directed edges (counting multiplicities). (3) Every edge
in M(µ) is either anorth edgeleading from some vertexv to v + r or aneast edgeleading fromv to
v − s. (4) M(µ) is connected, balanced, and has no isolated vertices. We letMGraphr,s,n be the set of
all multigraphs having properties (1) through (4).

A convenient way to visualize the multigraphM(µ) is to draw all the vertices between the lines
x + y = 0 andx + y = r + s in R2, with “wraparound” at these two edges. A lattice point(x, y)
in this region corresponds to the vertexv = dr,s(x, y) in the multigraph. In this picture, edges from
v to v + r are indeed “north edges” in the usual sense, while edges fromv to v − s are “east edges”
in the usual sense. Note that each vertex in the multigraph isobtained by “collapsing” all the lattice
points on ther/s-diagonalry − sx = v into the single vertexv. Thus, we can view the tourE(µ) as a
cylindrical lattice pathobtained by collapsing the ordinary lattice pathBdy(µ) onto an “r/s-cylinder.”
The multigraph from the previous example is illustrated in Figure 2.

For each multigraphM ∈ MGraphr,s,n, define

ParM = {µ ∈ Parr,s,n : M(µ) = M}.

Also defineETourM to be the set of all Eulerian toursE on M that begin and end at vertex0. We have
just seen that everyµ ∈ ParM has an associated Eulerian tourE(µ) ∈ ETourM . Conversely, it is clear
that any Eulerian tourT ∈ ETourM has the formE(µ) for a unique partitionµ ∈ ParM . For, given
T = (0 = v0, v1, . . . , vrn+sn), µ is determined by the conditionsBdy(µ)i = N if vi − vi−1 = r and
Bdy(µ)i = E if vi − vi−1 = −s. In summary, we have canonical bijectionsParM → ETourM for each
M , which assemble to give a canonical bijection

Parr,s,n →
⋃

M∈MGraphr,s,n

ETourM .

4.4 Formulation using Arrival Words and Departure Words

We now introduce a convenient description of Eulerian toursand multigraphs using sequences of binary
words. Givenµ ∈ Parr,s,n, define the sequence ofarrival words (wv(µ) : v ≥ 0) as follows. Write
Bdy(µ) = u1 · · · urn+sn and VBdy(µ) = ((xi, yi) : 0 ≤ i ≤ rn + sn), as usual. Givenv, let

8



0

0

3 15

6810 4

7

2

10

5

Figure 2: Multigraph associated to the partitionµ of Example 9.

j1 < j2 < . . . < jm be the indices such thatdr,s(xjk
, yjk

) = v. Definewv(µ) = uj1uj2 · · · ujm.
Informally, we construct the arrival wordwv by traversing the Eulerian tourE(µ), recording an N every
time the tour arrives atv via a north step from vertexv−r, and recording an E every time the tour arrives
at v via an east step from vertexv + s. Thus if M(µ) hasai east edges enteringv andbi north edges
enteringv, we havewv(µ) ∈ W (EaiN bi).

Example 10. Forµ = (12, 12, 10, 8, 7, 4, 1, 1, 1), the nonempty arrival words are:

w0 = EE, w1 = EEE, w2 = EEE, w3 = NEEN, w4 = NENNE,

w5 = EN, w6 = EN, w7 = NN, w8 = E, w10 = N.

We can use a dual construction to define the sequence ofdeparture words(yv(µ) : v ≥ 0) for
µ ∈ Parr,s,n. Fix v. Writing Bdy(µ) andVBdy(µ) as above, letj1 < j2 < . . . < jm be the indices
such thatdr,s(xjk−1, yjk−1) = v. Defineyv(µ) = uj1uj2 · · · ujm. Informally, we construct the departure
word yv by traversing the Eulerian tourE(µ), recording an N every time the tour leavesv going north
to v + r, and recording an E every time the tour leavesv going east tov − s. Thus ifM(µ) hasci east
edges leavingv anddi north edges leavingv, we haveyv(µ) ∈ W (EciNdi).

Example 11. Forµ = (12, 12, 10, 8, 7, 4, 1, 1, 1), the nonempty departure words are:

y0 = NN, y1 = NNN, y2 = NEE, y3 = EEEN, y4 = NNEEE,

y5 = EE, y6 = EE, y7 = NE, y8 = E, y10 = E.

There is no loss of information in the passage fromµ to (yv(µ) : v ≥ 0). For, knowing this sequence
of departure words, we can first recover the numbersci anddi, which are sufficient to reconstitute the
multigraphM(µ). Next, we can recover the Eulerian tourE(µ) (or equivalently, the lattice pathBdy(µ))

9



by simply moving forward through the multigraph starting atvertex0. At each vertex, we consult the
next unused character in the departure word for that vertex to decide which step to take next (north or
east). We continue in this way forrn + sn steps. Similarly, we can recoverM(µ), E(µ), Bdy(µ) andµ
from the sequence of arrival words(wv(µ) : v ≥ 0). The only difference is that now we must reconstruct
Bdy(µ) going backwards from(rn, sn) to (0, 0). At each step, we consult the next unused character in
the arrival word for the current vertex —reading right to left— to decide what the previous step in the
path must have been.

Example 12. Suppose thatν ∈ Par3,2,5 has the following sequence of arrival words.

w0 = EE, w1 = EEE, w2 = EEE, w3 = NNEE, w4 = NENNE,

w5 = NE, w6 = EN, w7 = NN, w8 = E, w10 = N.

By counting E’s and N’s in each word, we discover thatM(ν) is the multigraph shown in Figure 2.
Moving backwards through the multigraph from vertex 0, we recover the sequence of steps

EEENEENNEENENENEEEEENNNEN.

Reversing this word and drawing the resulting lattice path,we find thatν = (12, 10, 10, 8, 7, 6, 1, 1, 1).

4.5 Characterization of Valid Arrival Words

We can summarize the results of the previous subsection in the following way. Given a multigraph
M ∈ MGraphr,s,n and a vertexv ∈ VM , let Ein(v,M) be the number of east edges ofM enteringv.
The quantitiesEout(v,M), Nin(v,M), andNout(v,M) are defined similarly. Then we have shown that
the “arrival map”µ 7→ (wv(µ) : v ∈ VM ) gives an injection

φa : ParM →
∏

v∈VM

W (EEin(v,M)NNin(v,M)).

Similarly, the “departure map”µ 7→ (yv(µ) : v ∈ VM ) gives an injection

φd : ParM →
∏

v∈VM

W (EEout(v,M)NNout(v,M)).

However, these maps arenot surjective in general. For, suppose we take an arbitrary sequence of
arrival words (resp. departure words) and perform the tour-regeneration procedure indicated in the last
subsection. Then it may well happen that we arrive back at vertex 0 after fewer thanrn + sn steps with
no unused edges left leading into (resp. away from) vertex zero. In this situation, the given sequence of
words lies outside the image ofφa (resp.φd).

Example 13. Consider the following sequence of arrival words.

w0 = EE, w1 = EEE, w2 = EEE, w3 = NEEN, w4 = EENNN,

w5 = NE, w6 = EN, w7 = NN, w8 = E, w10 = N.

Drawing the multigraph and moving backwards from 0, we recover the sequence of steps

EENENEENEEENNEENEENN.

At this point, we have returned to vertex0, and there are no unused letters left inw0. Yet, we have not
used all the edges in the multigraph! So the given collectionof words is not in the image ofφa.

10



We will now derive a simple characterization of the image of the mapφa (a dual result holds for
φd). This characterization follows readily from the connection between Eulerian tours and oriented trees
given in the proof of Theorem 5.6.2 of [14]. For the convenience of the reader, we recall the relevant
details now.

First we need a few more definitions. LetWE(EaN b) be the set of allw ∈ W (EaN b) such thatw1 =
E, and letWN (EaN b) be the set of allw ∈ W (EaN b) such thatw1 = N . Dually, letW (EaN b)E be
the set of allw ∈ W (EaN b) such thatwa+b = E, and letW (EaN b)N be the set of allw ∈ W (EaN b)
such thatwa+b = N . Given a multigraphM ∈ MGraphr,s,n, let TreeA(M) be the set of all oriented
spanning trees leading from the root0. GivenT ∈ TreeA(M), each nonzero vertexv in M has a unique
edge ofT leading into it. WriteTv = N if this is a north edge, and writeTv = E if this is an east edge.
Dual definitions apply to the setTreeD(M) of all oriented spanning trees leading to the root0.

Theorem 14. For eachM ∈ MGraphr,s,n, the arrival map is a bijection

φa : ParM
∼=

⋃

T∈TreeA(M)

∏

v∈VM

WTv(E
Ein(v,M)NNin(v,M)).

Proof. Let S denote the set on the right side of the theorem statement. First we show thatφa(µ) ∈ S for
eachµ ∈ ParM . Givenµ, write φa(µ) = (wv(µ) : v ∈ VM ) as usual. Define a subgraphT = (VT , ET )
of M as follows. The vertex setVT is VM . For each nonzero vertexv of VM , there is exactly one edge
of T leading intov. This edge is an east edge ifwv(µ)1 = E and a north edge ifwv(µ)1 = N . Vertex
zero has no edges leading into it. Note that the edges ofT encode the “first arrivals” of the Eulerian tour
E(µ) at each nonzero vertexv. It follows from this definition thatwv(µ) ∈ WTv(E

Ein(v,M)NNin(v,M))
for eachv. Thus we need only verify thatT ∈ TreeA(M).

Note that the directed graphT has|VM | vertices and|VM |−1 edges. Each nonzero vertex has exactly
one edge ofT leading into it. To check thatT is an oriented spanning tree leading from zero, it evidently
suffices to prove thatT has no cycles. Assume, to get a contradiction, thatC = (z0, z1, . . . , zk) is such
a cycle, wherek > 0 andzk = z0. Among the vertices inC, let zi be the vertex that occurs earliest in
the Eulerian tourE(µ). Sincez0 = zk, we can choosei so that1 ≤ i ≤ k. Since there is an edge from
zi−1 to zi in T , zi cannot be vertex 0. Thus, the tour enteredzi for the first time from some other vertex
z′. This vertexz′ mustbezi−1, by definition of the edge set ofT . But zi−1 6= zi, so this contradicts the
choice ofzi as the earliest vertex inC encountered by the tour. ThereforeT ∈ TreeA(M), as desired.
For later use, defineTree(µ) to be the treeT constructed here using the initial letters of the arrival words
for µ.

To complete the proof, we show that every objectW = (wv : v ∈ VM ) ∈ S has the formW = φa(ν)
for someν ∈ ParM . Given such aW , note first that we can recover the multigraphM by counting letters
in the wordswv . We can also recover the treeT ∈ TreeA(M) from W by looking at the initial letters of
the wordswv . Next, we execute the algorithm from the end of the last subsection to recoverBdy(ν) in
reverse. If the algorithm succeeds in consuming allrn + sn edges in the multigraph, then we will have
found aν such thatφa(ν) = W . Thus, it suffices to show that the algorithm never gets stuckbefore using
all the edges inM . Suppose the tour being generated by the algorithm has just reached some vertexv (by
moving backwards along an edge leading out ofv), and suppose that there exists an edge in the multiset
EM that has not yet been consumed by the tour. We consider two cases.

Case 1:v 6= 0. Since the tour starts at0, it follows that the tour has reachedv once more than it has
left v. SinceM is balanced,indeg(v) = outdeg(v), and therefore there must be an edge enteringv that
can be used to continue the reconstruction process.

Case 2:v = 0. Note that the partial tour is closed in this case, so it enters each vertexv as often as it
leavesv. To get a contradiction, assume that there are no unused edges entering vertex0. Recall that the
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edges ofT came from theinitial letters of the arrival words, which are thelast letters to be consumed by
the tour regeneration algorithm. Since there is at least oneunused edge by hypothesis, there must exist a
nonzero vertexw such that the edge ofT leading intow has not yet been consumed.1 Among all suchw,
choose one such thatdistT (0, w) is minimal. Lety be the vertex just beforew on the path from0 to w
in T . By choice ofy andw, one of the edges fromy to w in M was not used by our partial tourP . Since
indeg(y) = outdeg(y) andP entersy as often as it leavesy, we see that one of the edges leading intoy
was not used by our partial tour. By definition of the tour regeneration algorithm, it follows that the first
arrival edge leading intoy (which is an edge ofT ) was not used. Ify 6= 0, this contradicts our choice
of w. If y = 0, this contradicts our assumption that there were no remaining edges entering vertex zero.
These contradictions show that there must be an unused edge leading into vertex zero, which can be used
to continue the tour reconstruction process.

SinceParr,s,n is the disjoint union of the various setsParM , we obtain the following fundamental
structural result.

Corollary 15. The arrival map defines a canonical bijection

Parr,s,n
∼=

⋃

M∈MGraphr,s,n

⋃

T∈TreeA(M)

∏

v∈VM

WTv(E
Ein(v,M)NNin(v,M)).

Dual arguments prove that the departure map is a bijection

φd : ParM
∼=

⋃

T∈TreeD(M)

∏

v∈VM

W (EEout(v,M)NNout(v,M))Tv .

These maps assemble to give a bijection

Parr,s,n
∼=

⋃

M∈MGraphr,s,n

⋃

T∈TreeD(M)

∏

v∈VM

W (EEout(v,M)NNout(v,M))Tv .

5 Reformulation of the Partition Statistics

As in the last section, we fix integersr, s, n with gcd(r, s) = 1, and we consider partitionsµ ∈
Parr,s,n. The next step towards the proof of Theorem 5 is to express thepartition statistics|µ|, midr/s(µ),
c+
r/s(µ), c−r/s(µ), andctotr,s(µ) in terms of the lattice paths, multigraphs, Eulerian tours,arrival words,

and departure words from the last section. In this section, we will prove the surprising fact that|µ|,
midr/s(µ), andctotr/s(µ) depend only on the multigraphM(µ), not on the tourE(µ). On the other
hand, we show thatc+

r/s
(µ) andc−

r/s
(µ) may be easily calculated using the arrival words and departure

words forµ (respectively). Combining these facts with the structure theorems from the last section, we
will deduce two fermionic formulas forFr,s,n.

To state these results more precisely, we introduce some more definitions. Given a wordw =
w1w2 · · ·wa+b ∈ W (EaN b), theinversion setof w is

Inv(w) = {(i, j) : 1 ≤ i < j ≤ a + b andwi = E andwj = N}.

1More precisely, this means that the number of times this edgeoccurs in the partially reconstructed tour is less than the
number of times this edge occurs in the edge multisetEM .
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Elements(i, j) of Inv(w) are calledinversionsof w; we let inv(w) = | Inv(w)| be the number of
inversions ofw. It is well-known that

∑

w∈W (EaNb)

qinv(w) =

[

a + b

a, b

]

q

=

∏a+b
i=1 (1 − qi)

∏a
i=1(1 − qi)

∏b
i=1(1 − qi)

.

Next, letΛ(r, s, n) denote the unique partition of maximal area inParr,s,n, and letAmax(r, s, n) =
|Λ(r, s, n)|. It is easy to check thatΛ(r, s, n)i = rn − ⌈ri/s⌉ and

Amax(r, s, n) = rsn(n − 1)/2 + n

s−1
∑

i=0

⌊ri/s⌋.

Given a multigraphM ∈ MGraphr,s,n, define

area(M) = Amax(r, s, n) −
∑

v∈VM

⌊v/s⌋Nout(v,M);

mid(M) = Amax(r, s, n) −
∑

v,w∈VM

Ein(v,M)Nin(w,M)χ(v ≥ w);

ctot(M) =
∑

v∈VM

Ein(v,M)Nin(v,M) − (n − Ein(0,M)).

Theorem 16. For anyµ ∈ Parr,s,n, we have:

c+
r/s(µ) =

∑

v∈VM

inv(wv(µ)), c−r/s(µ) =
∑

v∈VM

inv(yv(µ));

|µ| = area(M(µ)), midr/s(µ) = mid(M(µ)), ctotr/s(µ) = ctot(M(µ)).

The proof of this theorem is rather long, so we break it up intoseveral subsections. Throughout the
proof, we fixµ ∈ Parr,s,n and adopt the following notation. WriteBdy(µ) = w = w1w2 · · ·wrn+sn ∈
W (ErnN sn); VBdy(µ) = ((x0, y0), . . . , (xrn+sn, yrn+sn)); M = M(µ) = (VM , EM ); and E =
E(µ) = (v0, v1, . . . , vrn+sn), wherevi = dr,s(xi, yi). Let (e1, e2, . . . , ern+sn) be the ordered sequence
of edges associated to the Eulerian tourE(µ), so thatei = (vi−1, vi). Finally, let(wv(µ) : v ∈ VM ) be
the sequence of arrival words forµ, and let(yv(µ) : v ∈ VM ) be the sequence of departure words forµ.

5.1 Analysis ofc+ and c−

Note first that there is a canonical bijection betweendg(µ) andInv(Bdy(µ)). For, given a cellc ∈ dg(µ),
consider the corresponding unit square indgr,s,n(µ). Look for the east stepwi ∈ Bdy(µ) located south
of this square and the north stepwj ∈ Bdy(µ) located east of this square. Clearly,(i, j) is an inversion
of w that is uniquely determined by the cell in question, and conversely.

The stepswi andwj in Bdy(µ) correspond to the east edgeei and the north edgeej in the Eulerian
tour onM . We can compute the quantitysa(c) − rl(c) from the edgesei andej as follows. Recall that
wi is an east step from(xi−1, yi) to (xi, yi), whilewj is a north step from(xj, yj −1) to (xj, yj). Thus,
ei is an east edge inM from vi−1 = ryi − sxi + s to vi = ryi − sxi, while ej is a north edge inM from
vj−1 = ryj − r − sxj to vj = ryj − sxj . Consideration ofdgr,s,n(µ) shows thata(c) = xj − xi and
l(c) = yj − 1 − yi. Therefore,

sa(c) − rl(c) = sxj − sxi − ryj + r + ryi = vi − vj−1 = vi − vj + r = vi−1 − vj−1 − s.
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In other words, ifc ∈ dg(µ) corresponds to(i, j) ∈ Inv(Bdy(µ)), then we have

sa(c) − rl(c) = fin(ei) − init(ej) = fin(ei) − fin(ej) + r = init(ei) − init(ej) − s. (11)

Now observe thatc contributes toc+
r/s(µ) iff sa(c) − rl(c) = +r iff fin(ei) = fin(ej). Thus, the

statisticc+
r/s(µ) counts the number of pairsi < j such thatei is an east edge andej is a north edge

arriving at the same vertex ofM . Such pairs clearly correspond to the inversions in the various arrival
wordsvw(µ). This proves the formula forc+

r/s(µ) in Theorem 16. Similarly,c contributes toc−r/s(µ) iff

sa(c) − rl(c) = −s iff init(ei) = init(ej). Thus,c−r/s(µ) is the number of pairsi < j such thatei is
an east edge andej is a north edge departing from the same vertex ofM . The number of such pairs is
∑

v∈VM
inv(yv(µ)), which proves the second formula in Theorem 16.

At this stage, we can also present a preliminary formula formidr/s(µ). Namely, equation (11)
immediately yields

midr/s(µ) =
∑

i<j

χ(ei is an E edge,ej is a N edge, and− s < fin(ei) − init(ej) < r).

This formula certainly appears to depend on the ordered edgesequence(ei) in the Eulerian tour, not just
on the multigraphM . But we will see shortly that this dependence is illusory.

5.2 Analysis of Area

The next step is to prove that

|µ| = Amax(r, s, n) −
∑

v∈VM

⌊v/s⌋Nout(v,M) = area(M).

Define areac(µ) = Amax(r, s, n) − |µ|, which is the number of lattice squares in the skew shape
dgr,s,n(Λ(r, s, n)) − dgr,s,n(µ). It suffices to show thatareac(µ) =

∑

v∈VM
⌊v/s⌋Nout(v,M). Let

us count the number of lattice squares in∆r,s,n to the right of a given north step onBdy(µ). Suppose the
north step starts at the lattice point(a, b), which maps to the vertexv = rb − sa in the multigraph. The
diagonal boundary of∆r,s,n has equationx = (r/s)y, so that the point(rb/s, b) lies on this boundary.
Scanning left from that point to(a, b), it is clear that the number of complete lattice squares to the right
of this north step must be

⌊

rb

s
− a

⌋

=

⌊

rb − sa

s

⌋

= ⌊v/s⌋.

Adding over all the north steps inBdy(µ), we obtain the desired expression
∑

v∈VM
⌊v/s⌋Nout(v,M)

for the number of cells in the skew shape.

5.3 Analysis ofΛ(r, s, n)

We will prove the last two formulas in Theorem 16 by inductionon areac(µ). We handle the base case
in this section. Clearly,areac(µ) = 0 iff µ = Λ(r, s, n). For convenience, writeΛ = Λ(r, s, n). We first
show that

midr/s(Λ) = |Λ| = Amax(r, s, n), c+
r/s(Λ) = c−r/s(Λ) = ctotr/s(Λ) = 0.

It suffices to show thatsa(c) − rl(c) ∈ (−s, r) for everyc ∈ dg(Λ).
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By drawingΛ inside∆r,s,n, we see thatΛi = rn − ⌈ri/s⌉ for 1 ≤ i ≤ sn andΛ′
j = sn − ⌈sj/r⌉

for 1 ≤ j ≤ rn. Given an arbitrary cellc = (i, j) ∈ dg(Λ), we compute

sa(c) − rl(c) = s(rn − ⌈ri/s⌉ − j) − r(sn − ⌈sj/r⌉ − i)

= (r⌈sj/r⌉ − sj) + (ri − s⌈ri/s⌉).

The first parenthesized quantity lies in the interval[0, r), while the second parenthesized quantity lies in
the interval(−s, 0], as the reader may readily check using the division algorithm. Thus,sa(c)− rl(c) ∈
(−s, r), as desired.

We now gather information about the multigraphM(Λ) and the Eulerian tourE(Λ). We claim first
that every vertex ofM(Λ) lies in the set{0, 1, . . . , r + s − 1}. If not, the Eulerian tourE(Λ) must take
a north edge from some vertexu to a vertexu + r ≥ r + s. This edge corresponds to a certain north
step inBdy(Λ) starting at a point(x, y) with dr,s(x, y) = u. Sinceu ≥ s, the point(x + 1, y) satisfies
dr,s(x + 1, y) ≥ 0 and hence lies in the triangle∆r,s,n. But then the unit square with southwest corner
(x, y) lies inside this triangle and outsideΛ, contradicting the definition ofΛ.

Let us focus initially on the firstr + s steps ofΛ, which form a little lattice pathP . Let u0 =
0, u1, . . . , ur+s be the vertices in the multigraph visited by the edges ofE(Λ) corresponding to the steps
of P . LetE ′ denote the firstr+s edges in the tourE(Λ). We claim thatu0, . . . , ur+s−1 must be pairwise
distinct. If not, choosei < j in this range withui = uj; note that0 < j − i < r + s. Suppose the tour
takesa north edges andb east edges to go fromui to uj , wherea + b = j − i. Sinceuj = ui + ar − bs
and alsoui = uj, we havear = bs > 0. Sincea + b = j − i < r + s, we havea < s or b < r. Thus,
lcm(r, s) < rs and hencegcd(r, s) > 1, a contradiction. It now follows from the first claim that thelist
u0, . . . , ur+s−1 must be a permutation of the vertices0, 1, 2, . . . , r + s − 1. Now, E ′ cannot go north
from any of the verticess, s + 1, . . . , s + r − 1; otherwiseM(Λ) would have a vertex≥ r + s. So

E ′ takes east edges from verticess, s + 1 . . . , s + r − 1 into vertices0, 1, . . . , r − 1. (12)

Moreover,E ′ cannot go east from any of the vertices0, 1, 2, . . . , s− 1; otherwiseP would dip below the
bounding triangle. So

E ′ takes north edges from vertices0, 1, . . . , s − 1 into verticesr, r + 1 . . . , r + s − 1. (13)

We have now accounted for all the edges ofE ′. Since there exists an east edge ofE ′ arriving at vertex0,
and sinceui 6= u0 = 0 for 0 < i < r + s, we must in fact haveur+s = 0. Repeating this argument for
the nextr + s steps inBdy(Λ), etc., we see that the full tourE(Λ) just traces out the edge sequence in
E ′ n times in succession. We conclude that the vertex set ofM(Λ) is {0, 1, . . . , r + s − 1} and that the
edge multiset ofM(Λ) is specified by the conditions

Ein(u,M(Λ)) = n, Nin(u,M(Λ)) = 0 for 0 ≤ u < r; (14)

Ein(u,M(Λ)) = 0, Nin(u,M(Λ)) = n for r ≤ u < r + s. (15)

In particular, there cannot exist verticesv ≥ w with Ein(v,M(Λ)) 6= 0 andNin(w,M(Λ)) 6= 0. It is
now clear from the definitions that

mid(M(Λ)) = Amax(r, s, n) − 0 = midr/s(Λ);

ctot(M(Λ)) = 0 − (n − n) = 0 = ctotr/s(Λ).

This completes the proof of the base case.

Example 17. The multigraph corresponding toΛ(5, 3, 3) = (13, 11, 10, 8, 6, 5, 3, 1, 0) is shown in Fig-
ure 3.
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Figure 3: Multigraph forΛ(5, 3, 3).

5.4 Analysis of ctot

In this subsection, we prove that

ctotr/s(µ) =
∑

v∈VM

Nin(v,M)Ein(v,M) − (n − Ein(0,M)) = ctot(M).

We use induction onareac(µ). The base caseµ = Λ(r, s, n) has already been proved.
For the induction step, assume|µ| < Amax(r, s, n). We will apply the induction hypothesis to a

certain partitionµ∗ ∈ Parr,s,n that is obtained fromµ by adding one outer corner cell, as follows. The
outer corners ofµ where we might add a new cell correspond to indicesi < rn + sn such thatei is a
north edge andei+1 is an east edge in the Eulerian tour forµ. Addition of the new cell affects the tour
by replacingei by an east edge andei+1 by a north edge. We therefore needinit(ei) ≥ s so that the
new cell will remain inside∆r,s,n. To defineµ∗, consider all the indicesi such thatei andei+1 have
the properties just mentioned. (There is at least one suchi, sinceµ 6= Λ(r, s, n).) Among these indices,
choose one such thatvi = fin(ei) is as large as possible. If there are several choices fori that maximize
fin(ei), choosei minimal with this property. It is clear thatvi must be the largest vertex inVM , and
ei is the first north edge ofE(µ) arriving at this vertex. Accordingly,Ein(vi,M) = Nout(vi,M) = 0.
Now let µ∗ ∈ Parr,s,n be the partition whose Eulerian tour is obtained fromE by changingei to an east
edge andei+1 into a north edge. We writeM∗ for M(µ∗), E∗ for E(µ∗), etc. The multigraphsM and
M∗ differ only at verticesvi, vi − r, vi − s, andvi − r − s. We haveNin(vi,M

∗) = Nin(vi,M) − 1,
Eout(vi − r,M∗) = Eout(vi − r,M) + 1, etc.

By construction,µ∗ ∈ Parr,s,n is obtained fromµ by the addition of one outer corner cell. By
induction hypothesis, we know thatctotr/s(µ

∗) = ctot(M∗). Writing ∆1 = ctotr/s(µ
∗) − ctotr/s(µ)

and∆2 = ctot(M∗) − ctot(M), it now suffices to show that∆1 = ∆2. Let us compute each of these
quantities.

Given a vertexv ∈ VM and an integerk, let

E<k
in (v) =

∑

j<k

χ(ej is an E edge andfin(ej) = v).

Let E<k∗
in (v) be the analogous quantity forµ∗, and make analogous definitions forN>k

in (v), etc. Consid-
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eration of the arrival words atvi − s andvi − r − s shows that

c+
r/s(µ

∗) − c+
r/s(µ) = E<i+1∗

in (vi − s) + N>i∗
in (vi − r − s) − N>i+1

in (vi − s)

= 0 + N>i
in (vi − r − s) − N>i+1

out (vi − r − s).

Similarly, consideration of the departure words atvi − r andvi − r − s gives

c−r/s(µ
∗) − c−r/s(µ) = N>i∗

out (vi − r) + E<i+1∗
out (vi − r − s) − E<i

out(vi − r)

= Nin(vi,M) − 1 + E<i+1
out (vi − r − s) − E<i

in (vi − r − s).

Adding, we see that

∆1 = Nin(vi,M) − 1 + N>i
in (vi − r − s) − N>i

out(vi − r − s) + E≤i
out(vi − r − s) − E≤i

in (vi − r − s).

Note that the partial tour consisting of edgese1, . . . , ei enters vertexvi − r − s as often as it leaves that
vertex — unlessvi − r − s = 0, in which case there is one more exit than entry. In the current notation,
this fact can be written

N≤i
in (vi − r − s) + E≤i

in (vi − r − s) + χ(vi − r − s = 0) = N≤i
out(vi − r − s) + E≤i

out(vi − r − s).

We can use this relation to rewrite the preceding expressionfor ∆1, obtaining

Nin(vi,M)−1+N>i
in (vi−r−s)−N>i

out(vi−r−s)+N≤i
in (vi−r−s)−N≤i

out(vi−r−s)+χ(vi−r−s = 0)

= Nin(vi,M) − 1 + Nin(vi − r − s,M) − Nout(vi − r − s,M) + χ(vi − r − s = 0).

To compute∆2 = ctot(M∗) − ctot(M), first note that

−(n − Ein(0,M
∗)) − (−(n − Ein(0,M))) = Ein(0,M

∗) − Ein(0,M) = χ(vi − r − s = 0).

Second, note that the only nonzero terms in

∑

v∈VM∪VM∗

[Ein(v,M∗)Nin(v,M∗) − Ein(v,M)Nin(v,M)]

come from the verticesv = vi − s andv = vi − r − s. Whenv = vi − s, we get the term

(Ein(vi − s,M) − 1)(Nin(vi − s,M) + 1) − Ein(vi − s,M)Nin(vi − s,M)

= Ein(vi − s,M) − 1 − Nin(vi − s,M) = Nin(vi,M) − 1 − Nout(vi − r − s,M).

Whenv = vi − r − s, we get the term

(Ein(vi−r−s,M)+1)Nin(vi−r−s,M)−Ein(vi−r−s,M)Nin(vi−r−s,M) = Nin(vi−r−s,M).

Therefore,

∆2 = Nin(vi,M) − 1 + Nin(vi − r − s,M) − Nout(vi − r − s,M) + χ(vi − r − s = 0) = ∆1.
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5.5 Analysis of mid

In this subsection, we prove that

midr/s(µ) = Amax(r, s, n) −
∑

v,w∈VM

Ein(v,M)Nin(w,M)χ(v ≥ w) = mid(M),

which will complete the proof of Theorem 16. We use inductionon areac(µ). The base caseµ =
Λ(r, s, n) has already been proved (§5.3). For the induction step, letµ∗ be the partition obtained fromµ as
in the last subsection. By induction hypothesis,midr/s(µ

∗) = mid(M∗). Writing ∆1 = midr/s(µ
∗) −

midr/s(µ) and∆2 = mid(M∗) − mid(M), it suffices to show that∆1 = ∆2.
Let us begin by computing∆2. By maximality ofvi, v > vi − s implies Ein(v,M) = Eout(v +

s,M) = 0. So

mid(M) = Amax(r, s, n) +
∑

vi−s≥v≥w

(−Ein(v,M)Nin(w,M)).

A similar formula holds formid(M∗). When computing∆2 = mid(M∗) − mid(M), we get nonzero
contributions from the following summands.

• Whenv = w = vi − s, the summand forM∗ is −(Ein(vi − s,M) − 1)(Nin(vi − s,M) + 1)
while the summand forM is−Ein(vi − s,M)Nin(vi − s,M). Subtracting gives a contribution of
Nin(vi − s,M) − Ein(vi − s,M) + 1 = Nin(vi − s,M) − Nin(vi,M) + 1.

• Whenv = vi − s andw < v, the summand forM∗ is −(Ein(vi − s,M) − 1)Nin(w,M) and the
summand forM is −Ein(vi − s,M)Nin(w,M). Subtracting gives a contribution ofNin(w,M)
for eachw < vi − s.

• Whenv = vi − r − s andw ≤ v, a similar calculation gives a contribution of−Nin(w,M) for
eachw ≤ vi − r − s.

Adding these contributions and taking cancellation into account, we see that

∆2 = 1 − Nin(vi,M) +
∑

vi−r−s<w≤vi−s

Nin(w,M). (16)

The computation of∆1 is a bit more tedious. Recall (§5.1) that

midr/s(µ) =
∑

j<k

χ(ej is an E edge,ek is a N edge, and− s < fin(ej) − init(ek) < r).

An analogous formula holds formidr/s(µ
∗). For most choices ofj andk, the summand forµ will equal

the corresponding summand forµ∗. The only summands that might not match occur whenj or k equals
i or i + 1. Consider the various possible cases.

(A) Let j = i andk = i + 1. This pair contributes0 to midr/s(µ) and1 to midr/s(µ
∗), giving a net

contribution of1 to ∆1.
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(B) Let j = i, so thate∗j is an east edge entering vertexv = vi−r−s in E∗. Consider the various indices
k > i + 1 such thate∗k (= ek) is a north edge. We obtain a certain contribution tomidr/s(µ

∗) that
does not appear formidr/s(µ) sinceej is not an east edge inE . The net contribution to∆1 is
∑

w

N>i+1∗
out (w)χ(−r < w − (vi − r − s) < s) =

∑

w

N>i+1
out (w)χ(vi − 2r − s < w < vi − r).

Replacingw (the initial vertex for the north edgee∗k in question) byw + r (the final vertex for this
edge), we can write this as

∑

w

N>i+1
in (w)χ(vi − r − s < w < vi).

(C) Letk = i + 1, so thate∗k is a north edge leaving vertexw = vi − r − s in E∗. Consider the various
indicesj < i such thate∗j (= ej) is an east edge. Arguing as above, the net contribution to∆1 is

∑

v

E<i∗
in (v)χ(−s < v − (vi − r − s) < r)

=
∑

v

E<i
in (v)χ(vi − r − 2s < v < vi − s)

=
∑

v

E<i
out(v)χ(vi − r − s < v < vi).

(D) Let k = i, so thatei is a north edge leaving vertexw = vi − r in E . Consider the various indices
j < i such thatej (= e∗j ) is an east edge. This gives us a contribution tomidr/s(µ) but not to
midr/s(µ

∗). The net contribution to∆1 is

−
∑

v

E<i
in (v)χ(−s < v − (vi − r) < r)

= −
∑

v

E<i
in (v)χ(vi − r − s < v < vi)

= −
∑

v

E<i
out(v)χ(vi − r < v < vi + s)

= −
∑

v

E<i
out(v)χ(vi − r < v ≤ vi).

The last step follows since no vertex greater thanvi has an east edge leaving it.

(E) Let j = i + 1, so thatej is an east edge entering vertexv = vi − s in E . Consider the various
indicesk > i + 1 such thatek (= e∗k) is a north edge. As in (D), the net contribution to∆1 is

−
∑

w

N>i+1
out (w)χ(−r < w − (vi − s) < s)

= −
∑

w

N>i+1
out (w)χ(vi − r − s < w < vi)

= −
∑

w

N>i+1
in (w)χ(vi − s < w < vi + r)

= −
∑

w

N>i+1
in (w)χ(vi − s < w ≤ vi).
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Adding the contributions (C) and (D) and noting the cancellation, we get

∑

v

E<i
out(v)χ(vi − r − s < v ≤ vi − r) − E<i

out(vi).

The subtracted term is zero by minimality ofi. Similarly, adding the contributions (B) and (E) and
cancelling, we get

∑

w

N>i+1
in (w)χ(vi − r − s < w ≤ vi − s) − N>i+1

in (vi).

Now N>i+1
in (vi) = Nin(vi,M) − 1 by minimality of i. Our grand total so far is thus:

∆1 = 1 +
∑

v

E<i
out(v)χ(vi − r − s < v ≤ vi − r) (17)

+
∑

w

N>i+1
in (w)χ(vi − r − s < w ≤ vi − s) + 1 − Nin(vi,M). (18)

Comparing this to the formula (16) for∆2, the terms on line (18) look promising, while those on line
(17) do not. However, we will show momentarily that

1 +
∑

v

E<i
out(v)χ(vi − r − s < v ≤ vi − r) =

∑

w

N<i
in (w)χ(vi − r − s < w ≤ vi − s). (19)

Using this equality above, together with the fact thatN=i
in (w) = 0 = N=i+1

in (w) for w in the indicated
range, we discover that

∆1 =
∑

w

Nin(w,M)χ(vi − r − s < w ≤ vi − s) + 1 − Nin(vi,M) = ∆2.

Thus we are reduced to verifying (19). LetA be the set of vertices in the multigraph> vi − r − s, and
let B be the set of vertices≤ vi − r − s. Consider the firsti − 1 edges ofE . The trail traced out by
these edges begins inB (sincevi ≥ r + s) and ends inA (sinceei starts at vertexvi − r). The edges
contributing to the sum

∑

w N<i
in (w)χ(vi − r − s < w ≤ vi − s) are precisely the north edges before

ei that go from a vertex inB to a vertex inA. Call these “entering north edges.” The edges contributing
to the sum

∑

v E<i
out(v)χ(vi − r − s < v ≤ vi − r) are precisely the east edges beforeei that go from a

vertex inA to a vertex inB. Call these “exiting east edges.” As we follow the firsti − 1 edges, we will
alternately encounter entering north edges and exiting east edges (plus other edges that do not concern
us). Since this part of the trail ends inA, the last such edge we see must be an entering north edge.
Conclusion: There is one more entering north edge than exiting east edge. But this is precisely what (19)
is asserting. The proof of Theorem 16 is now complete.

5.6 Fermionic Formulas

Let FM (q, z, w, y) =
∑

µ∈ParM
q|µ|zmidr/s(µ)w

c+

r/s
(µ)

y
c−
r/s

(µ)
. By combining Theorem 14 and Theo-

rem 16, we obtain the identity

FM = qarea(M)zmid(M)yctot(M)
∑

T∈TreeA(M)

∏

v∈VM

[

Ein(v,M) + Nin(v,M) − 1

Ein(v,M)′, Nin(v,M)′

]

w/y

(w/y)pow ,
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whereEin(v,M)′ = Ein(v,M) − χ(Tv = E), Nin(v,M)′ = Nin(v,M) − χ(Tv = N), andpow =
Nin(v,M)χ(Tv = E). Similarly, we have the dual identity

FM = qarea(M)zmid(M)wctot(M)
∑

T∈TreeD(M)

∏

v∈VM

[

Ein(v,M) + Nin(v,M) − 1

Ein(v,M)′, Nin(v,M)′

]

y/w

(y/w)pow′

,

wherepow′ = Ein(v,M)χ(Tv = N). Adding over allM ∈ MGraphr,s,n, we deduce two fermionic
formulas forFr,s,n(q, z, w, y):

Theorem 18.

Fr,s,n =
∑

M∈MGraphr,s,n

qarea(M)zmid(M)yctot(M)
∑

T∈TreeA(M)

∏

v∈VM

[

Ein(v,M) + Nin(v,M) − 1

Ein(v,M)′, Nin(v,M)′

]

w/y

(w/y)pow

=
∑

M∈MGraphr,s,n

qarea(M)zmid(M)wctot(M)
∑

T∈TreeD(M)

∏

v∈VM

[

Ein(v,M) + Nin(v,M) − 1

Ein(v,M)′, Nin(v,M)′

]

y/w

(y/w)pow′

.

6 Proof of Theorem 5

In this section, we will prove the crucial symmetry propertyFr,s,n(q, z, w, y) = Fr,s,n(q, z, y, w) by
constructing an involutionI on Parr,s,n that fixes area andmidr/s while interchangingc+

r/s andc−r/s.
Since area,midr/s, andctotr/s are constant on the subsetsParM (for M ∈ MGraphr,s,n), it suffices
to construct involutionsIM : ParM → ParM such thatc+

r/s(IM (µ)) = ctot(M) − c+
r/s(µ) for all

µ ∈ ParM .

6.1 Definition of the Involution

Fix M ∈ MGraphr,s,n andµ ∈ ParM . LetT = Tree(µ) be the oriented tree leading from0 constructed
from the initial letters of the arrival wordswv(µ) in §4.5. Recall thatTv = wv(µ)1 gives the direction
(N or E) of the first arrival edge leading into vertexv. We now useT to separate the nonzero vertices of
M into three disjoint classes.

1. Call a nonzero vertexv red iff v + s 6∈ VM or v + s ∈ VM anddistT (0, v + s) 6= distT (0, v) − 1.

2. Call a nonzero vertexv blue iff v− r 6∈ VM or v− r ∈ VM anddistT (0, v − r) 6= distT (0, v)− 1.

3. Call a nonzero vertexv greeniff neither of the previous conditions holds. This means that v + s
andv − r are vertices ofM , anddistT (0, v + s) = distT (0, v − r) = distT (0, v) − 1.

A convenient way to visualize this situation is to embedT in R2 by placing vertex0 at (0, 0) and then
drawing the unique paths (consisting of north and east steps) leading to all the other vertices. Each vertex
v ∈ VM will appear in this picture at some point(x, y) in the plane withdr,s(x, y) = v. One can check
that a nonzero vertexv located at(x, y) is red iff (x − 1, y) is not in the tree;v is blue iff (x, y − 1) is
not in the tree; andv is green iff both(x − 1, y) and(x, y − 1) are vertices of this tree.

Now let v be a green vertex. Then the unique path inT from 0 to v goes through eitherv + s or
v − r just before reachingv. Suppose we modifyT by replacingTv by the opposite letter. It is easy
to check that the result is another oriented treeT ′ such that all vertices are assigned the same color as
before. More generally, if we modifyT by simultaneously toggling the edgesTv at an arbitrary subset of
the green vertices, the result is another treeT ′ ∈ TreeA(M) with the same color assignment as before.
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Figure 4: Trees associated toµ andI(µ).

Now we are ready to define the mapIM . First, definereversal mapsrev : W (EaN b) → W (EaN b)
andrev′ : W (EaN b) → W (EaN b) by setting

rev(w1w2 . . . wa+b) = wa+b · · ·w2w1, rev′(w1w2w3 . . . wa+b) = w1wa+b · · ·w3w2.

Note thatrev reverses an entire binary word, whilerev′ reverses the letters in a word following the initial
letter. Obviously,rev is an involution onW (EaN b), while rev′ is an involution on the setsWE(EaN b)
andWN (EaN b). To computeIM (µ), first find T and the vertex colorings as above. Replacewv(µ)
by rev(wv(µ)) at every green vertexv, and replacewv(µ) by rev′(wv(µ)) at every other vertexv of
VM . The initial letters of the new arrival words determine a newtreeT ′, as argued above. Therefore,
Theorem 14 guarantees that there is a unique partitionIM (µ) ∈ ParM associated to the new arrival
words. Moreover, since the coloring of the vertices relative to T ′ is the same as the coloring relative
to T , it is immediate thatIM is an involution. DefineI to be the involution onParr,s,n obtained by
assembling the various mapsIM .

Example 19. Let µ = (12, 12, 10, 8, 7, 4, 1, 1, 1) ∈ Par3,2,5. To computeI(µ), we first drawBdy(µ)
(see Figure 1) and the multigraphM(µ) (see Figure 2). As in Example 10, we find that the arrival words
for µ are:

w0 = EE, w1 = EEE, w2 = EEE, w3 = NEEN, w4 = NENNE,

w5 = EN, w6 = EN, w7 = NN, w8 = E, w10 = N.

Looking at the intial letters of these arrival words, we drawthe treeT = Tree(µ) in R2 as shown on the
left in Figure 4. The red vertices are 3, 4, 7, and 10; the blue vertices are 1, 2, and 6; the green vertices
are 5 and 8. We therefore fully reversew5 andw8, and reverse all but the first letter of the remaining
words. The new arrival words are

w0 = EE, w1 = EEE, w2 = EEE, w3 = NNEE, w4 = NENNE,

w5 = NE, w6 = EN, w7 = NN, w8 = E, w10 = N.

The associated tree appears on the right in Figure 4. Decoding these arrival words as in Example 12, we
find thatI(µ) = (12, 10, 10, 8, 7, 6, 1, 1, 1).
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6.2 Analysis ofc+
r/s

To finish the proof of Theorem 5, we need only verify thatc+
r/s(IM (µ)) = ctot(M) − c+

r/s(µ) for all

M ∈ MGraphr,s,n and allµ ∈ ParM . Fix M andµ, and letT = Tree(µ). Recall thatc+
r/s(µ) =

∑

v∈VM
inv(wv(µ)), and similarly forc+

r/s(IM (µ)). Now, it is easy to check that

inv(rev(w)) = ab − inv(w) for all w ∈ W (EaN b);
inv(rev′(w)) = ab − inv(w) + b for all w ∈ WE(EaN b);
inv(rev′(w)) = ab − inv(w) − a for all w ∈ WN (EaN b).

Furthermore, it is clear thatTv = wv(µ)1 = N if v is a red vertex, whileTv = wv(µ)1 = E if v is a
blue vertex orv = 0. From these remarks and the definition ofIM , it follows that

c+
r/s(IM (µ)) =

∑

v∈VM

Ein(v,M)Nin(v,M) +
∑

bluev

Nin(v,M) −
∑

redv

Ein(v,M) − c+
r/s(µ).

On the other hand,

ctot(M) =
∑

v∈VM

Ein(v,M)Nin(v,M) − (n − Ein(0,M)).

Comparing these expressions, we see that everything reduces to the following lemma.

Lemma 20.
Ein(0,M) +

∑

red v

Ein(v,M) −
∑

blue v

Nin(v,M) = n.

Proof. Let (v0 = 0, v1, . . . , vrn+sn = 0) be the sequence of vertices in the Eulerian tour forµ, and let
(e1, . . . , ern+sn) be the sequence of edges in this tour. Definedi = distT (0, vi) for 0 ≤ i ≤ (r + s)n.
We make three claims about these distances.

(A) If ei belongs to the edge set ofT or if ei enters a green vertex ofT , thendi = di−1 + 1.

(B) If ei is an east edge entering vertex0 or a red vertex ofT , thendi = di−1 + 1 − (r + s).

(C) If ei is a north edge entering a blue vertex ofT , thendi = di−1 + 1 + (r + s).

Claim (A) is clear; the other two claims will be proved in a moment. Denote the number of edges
in the tour satisfying the hypotheses of (A), (B), and (C) byn0, n1, andn2, respectively. Clearly,
n1 = Ein(0,M)+

∑

redv Ein(v,M) andn2 =
∑

bluev Nin(v,M). Thus we must prove thatn1−n2 = n.
Every edgeei belongs to exactly one of the categories (A), (B), or (C), andhencen0+n1+n2 = (r+s)n.
Furthermore,0 = drn+sn =

∑rn+sn
i=1 (di − di−1). Adding up the contributions from the three types of

edges, we get
n0 + n1(1 − r − s) + n2(1 + r + s) = 0.

It follows that(r + s)(n1 − n2) = n0 + n1 + n2 = (r + s)n, and hencen1 − n2 = n.
Claims (B) and (C) follow from a topological argument illustrated in Figure 5 in the case(r, s) =

(4, 3). We draw the vertices ofM(µ) and the edges ofT = Tree(µ) between the linesx + y = 0 and
x+ y = r + s, as explained in§4.3. We view this region as a cylinder obtained by identifying each point
(a, b) on the linex + y = r + s with the point(a − r, b − s) on the linex + y = 0. For each vertex
v ∈ VM , there is a unique path inT from 0 to v. We define thewinding number ofv relative toT to be
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the number of times this path “wraps around” the cylinder by jumping from the linex + y = r + s back
to the linex + y = 0. Denote this number bywind(v, T ). We allow a nonzero vertexv that is divisible
by r + s to have two winding numbers: namely, the copy ofv on the linex+ y = 0 has winding number
one greater than the copy ofv on the linex + y = r + s. See Figure 5. We now make the following
observations. (In the following discussion, ifr + s dividesvi−1 or vi, the location ofei in the picture
determines, in the obvious way, which winding numbers to use.)

(i) Supposew ∈ VM and there are two trails from0 to w in M of lengthsm1 andm2. Thenr + s
dividesm1 − m2. For suppose the first trail takesa1 north edges andb1 east edges, while the
second trail takesa2 north edges andb2 east edges. Thena1r − b1s = w = a2r − b2s, so that
(a1 − a2)r = (b1 − b2)s. Sincelcm(r, s) = rs, it follows thata1 − a2 = ks andb1 − b2 = kr for
some integerk ≥ 0. Som1 − m2 = (a1 + b1) − (a2 + b2) = k(r + s).

(ii) Supposev ∈ VM , and writedistT (0, v) = q(r + s) + u where0 ≤ u < r + s. If v lies below the
line x+y = r+s, thenwind(v, T ) = q. If v lies on the linex+y = r+s, thenwind(v, T ) = q−1.
This follows from the definition of winding number and the fact that it always takes exactlyr + s
steps to go from the linex + y = 0 to the linex + y = r + s.

(iii) For eachi, wind(vi, T ) − wind(vi−1, T ) ∈ {−1, 0, 1}. For, it is geometrically evident from the
picture ofT on the cylinder that there is no way for the winding number to change by two or more
when following a single edge ofM .

(iv) If wind(vi, T ) = wind(vi−1, T ) andei is not inT , thenvi is a green vertex. For it follows easily
from (ii) thatdistT (0, vi−1) = distT (0, vi) − 1 in this situation.

(v) Supposeei is not in the edge set ofT , andvi is either zero or a red vertex. Thenei is an east
edge, and it readily follows from (iii) and (iv) thatwind(vi, T ) = wind(vi−1, T ) − 1. Consider
the following two directed paths inM from 0 to vi. The first path is the unique path inT from 0
to vi, of lengthdi. The second path is the path inT from 0 to vi−1, followed by the edgeei; the
length of this path isdi−1 + 1. Using (i) and (ii), we easily deduce thatdi = di−1 + 1 − (r + s).
Thus claim (B) holds.

(vi) Supposeei is not in the edge set ofT , andvi is a blue vertex. Thenei is a north edge, and it readily
follows from (iii) and (iv) thatwind(vi, T ) = wind(vi−1, T ) + 1. Consider the following two
directed paths inM from 0 to vi. The first path is the unique path inT from 0 to vi, of lengthdi.
The second path is the path inT from 0 to vi−1, followed by the edgeei; the length of this path is
di−1 + 1. Using (i) and (ii), we easily deduce thatdi = di−1 + 1 + (r + s). Thus claim (C) holds.

6.3 The Combinatorial Homotopy

For each critical rationalr/s, we now have an involutionI = Ir/s that switchesh+
r/s andh−

r/s while
preserving area. By composing these involutions, we can produce bijections proving the equidistribution
of any two statisticshδ

x andhδ′

x′ . For example, Figure 6 shows how these involutions act on a particular
object as the parameter valuex goes from0 to ∞.
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Figure 5: Proof of claims (B) and (C).

7 Connection toq, t-Catalan Numbers

Definition 21. Let r, s, n be positive integers withgcd(r, s) = 1. Therational-slopeq, t-Catalan num-
bersare the polynomials

Cr,s,n(q, t) =
∑

µ∈Parr,s,n

qareac(µ)t
h+

r/s
(µ)

.

Whenr/s is an integer (i.e.,s = 1), one can show that this definition agrees with the combinatorial

interpretation of theq, t-Catalan numberC(r)
n (q, t) first proposed by Mark Haiman. More specifically, if

P is anr/1-Dyck path of ordern, then the statisticsarea(P ) anddinvr(P ) defined in [12] are respec-
tively equal toareac(µ) andh+

r (µ), whereBdy(µ) = P (cf. Lemma 6.3.3 in [7]). We now present an
extension of a fundamental conjecture about the combinatorial q, t-Catalan numbers.

Conjecture 22. For all r, s, n as above, we have thejoint symmetry property

Cr,s,n(q, t) = Cr,s,n(t, q).

At present, this conjecture has only been proved forr = s = 1. More specifically, Garsia and
Haglund proved thatC1,1,n(q, t) is the Hilbert series for the doubly gradedSn-module of diagonal har-
monic alternants [4, 5]. That Hilbert series is manifestly symmetric inq andt, whence the result. Even
whenr = s = 1, it is an open problem to construct an explicit bijection onParr,s,n that interchanges
areac andh+

r/s. On the other hand, for allr andn, there are known bijections onParr,1,n that sendareac

to h+
r/s or vice versa [12]. These maps prove theunivariatesymmetryCr,1,n(q, 1) = Cr,1,n(1, q).
There is a remarkable connection between the symmetry conjecture given here and the equidistribu-

tion property in Theorem 4. More precisely, we now show that certain cases of the theorem follow easily
from corresponding cases of the conjecture.

Theorem 23. Fix a positive integerr ≥ 1. If Cr,1,n(q, t) = Cr,1,n(t, q) for all sufficiently largen, then
the statisticsℓ(µ) andh+

r (µ) are equidistributed onPar(k) for all k ≥ 0.
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bounce path

n >> k

µ

Figure 7: Bouncing through a large triangle.
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Proof. For simplicity, we only consider the caser = 1. Write Cn(q, t) for C1,1,n(q, t). The proof
uses an alternate combinatorial interpretation of theq, t-Catalan number due originally to Haglund [6].
Givenµ ∈ Par1,1,n, definebounce(µ) by the following construction. Draw the diagramdg1,1,n(µ) in
the triangle∆1,1,n, as usual. A ball starts at(0, 0) and moves northk0 units until it touches either the
southwest corner of a unit square indg1,1,n(µ) or the top boundary liney = n. The ball then bounces
eastk0 units to(k0, k0). If k0 < n, the ball repeats this process, moving northk1 units until it touches the
southwest corner of a square ofµ or the liney = n, and then moving eastk1 units to(k0 + k1, k0 + k1).
This bouncing process continues, generating a sequence(k0, k1, . . . , ks), until the ball finally reaches
(n, n). Haglund’sbounce statisticis given by either of the formulas

bounce(µ) =

s
∑

i=0

iki =

s
∑

i=0

(n − ki).

(Note that the bounce statistic depends both onµ and onn.)
The hypothesisCn(q, t) = Cn(t, q) implies that there is a bijection onPar1,1,n that interchanges

areac and h+
1 . On the other hand, it is known [12] that there is a bijection on Par1,1,n such that

(areac,h+
1 ) maps to(bounce, areac). Composing these bijections, we get a bijectionα : Par1,1,n →

Par1,1,n such that(areac,h+
1 ) maps to(areac,bounce).

Fix k ≥ 0, and supposen ≥ 2k. On one hand, this choice ofn ensures thatPar(k) ⊆ Par1,1,n. On
the other hand, this choice ofn guarantees thatbounce(µ) = ℓ(µ) for µ ∈ Par(k), because the bouncing
ball will reach(n, n) after only two bounces. See Figure 7 for an example. It follows thatα restricts
to a bijection onPar(k) that sendsh+

1 (µ) to ℓ(µ) = h+
0 (µ). Thus we have a new bijective proof of the

equidistribution ofh+
1 andh+

0 (depending, of course, on the unknown bijection interchanging areac and
h+

1 !).
Whenr > 1, an analogous proof can be given using the “higher-order” bounce statistics introduced

in [12]. The key point is that these bounce statistics also reduce toℓ(µ) whenn is sufficiently large
compared to|µ|.
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