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Abstract. The combinatorial q, t-Catalan numbers are weighted sums
of Dyck paths introduced by J. Haglund and studied extensively by
Haglund, Haiman, Garsia, Loehr, and others. The q, t-Catalan numbers,
besides having many subtle combinatorial properties, are intimately con-
nected to symmetric functions, algebraic geometry, and Macdonald poly-
nomials. In particular, the n’th q, t-Catalan number is the Hilbert se-
ries for the module of diagonal harmonic alternants in 2n variables; it
is also the coefficient of s1n in the Schur expansion of ∇(en). Using
q, t-analogues of labelled Dyck paths, Haglund et al. have proposed
combinatorial conjectures for the monomial expansion of ∇(en) and the
Hilbert series of the diagonal harmonics modules.

This article extends the combinatorial constructions of Haglund et
al. to the case of lattice paths contained in squares. We define and
study several q, t-analogues of these lattice paths, proving combinato-
rial facts that closely parallel corresponding results for the q, t-Catalan
polynomials. We also conjecture an interpretation of our combinatorial
polynomials in terms of the nabla operator. In particular, we conjec-
ture combinatorial formulas for the monomial expansion of ∇(pn), the
“Hilbert series” 〈∇(pn), h1n〉, and the sign character 〈∇(pn), s1n〉.

1. Introduction

In 1996, A. Garsia and M. Haiman introduced a two-variable analogue
of the Catalan numbers called the q, t-Catalan numbers [7]. Garsia and
Haiman’s definition of the q, t-Catalan, which arose from their study of Mac-
donald polynomials and diagonal harmonics, was quite complicated. Sev-
eral years later, J. Haglund [8] conjectured an elementary combinatorial
definition of the q, t-Catalan numbers as weighted sums of Dyck paths rel-
ative to two statistics called area and bounce. Shortly thereafter, Haiman
proposed an equivalent combinatorial interpretation involving area and a
third statistic called dinv. Garsia and Haglund eventually proved that
the two combinatorial definitions were equivalent to the original definition
of Garsia and Haiman [5, 6]. Haiman proved many of the conjectures
relating the q, t-Catalan numbers to the representation theory of diago-
nal harmonics modules and the algebraic geometry of the Hilbert scheme
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[17, 18]. Meanwhile, various authors studied the subtle combinatorial prop-
erties of the combinatorial q, t-Catalan numbers and their generalizations
[4, 9, 13, 14, 19, 20, 21, 22, 23, 24]. Surveys of different aspects of this
research can be found in [15, 16, 19], and especially [11].

This article discusses a generalization of the combinatorial q, t-Catalan
numbers in which Dyck paths are replaced by lattice paths inside squares.
We develop the combinatorial theory of these “square q, t-lattice paths,”
which closely parallels the corresponding theory for the q, t-Catalan num-
bers. We also conjecture algebraic interpretations for our combinatorial gen-
erating functions in terms of the nabla operator introduced by F. Bergeron
and Garsia [1, 2, 3]. In particular, we conjecture a combinatorial formula
for the monomial expansion of ∇(pn) that is quite similar to a formula for
∇(en) conjectured in [13].

To motivate and organize our work on lattice paths inside squares, we
begin by quickly reviewing the combinatorial and algebraic results associated
with the combinatorial q, t-Catalan numbers. The main body of the paper
discusses the corresponding results and conjectures for our square q, t-lattice
paths.

1.1. Combinatorial Aspects of the q, t-Catalan Numbers. This sec-
tion reviews the essential definitions and combinatorial results involving the
q, t-Catalan numbers.

1. Lattice Paths and Dyck Paths. A lattice path in a c×d rectangle is a path
from (0, 0) to (c, d) consisting of c east steps and d north steps of length 1.
Such a path can be represented as a word w = w1 · · ·wc+d with d zeroes
(encoding north steps) and c ones (encoding east steps). Let Rc,d be the set
of lattice paths from (0, 0) to (c, d). A Dyck path of order n is a lattice path
in an n× n rectangle that never visits any point (x, y) with y < x. Let Dn

be the set of Dyck paths of order n.

2. Classical Statistics on Paths. For any logical statement A, write χ(A) = 1
if A is true, and χ(A) = 0 if A is false. Let P ∈ Rc,d be encoded by the word
w = w1w2 · · ·wc+d. Define the major index, inversions, and lower area of
P by the formulas maj(P ) =

∑
i<c+d iχ(wi > wi+1), inv(P ) =

∑
i<j χ(wi >

wj), and ar(P ) = cd− inv(P ). The q-binomial coefficient is given by any of
the following formulas:

(1)
[
c+ d

c, d

]
q

=
∑

P∈Rc,d

qar(P ) =
∑

P∈Rc,d

qinv(P ) =
∑

P∈Rc,d

qmaj(P ).

For D ∈ Dn ⊂ Rn,n, let gi(D) be the number of complete lattice squares
between D and the line y = x in the i’th row from the bottom (0 ≤ i <
n). Define the area vector of D to be g(D) = (g0(D), . . . , gn−1(D)). Set
area(D) =

∑n−1
i=0 gi(D) = ar(D)−

(
n+1

2

)
.
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3. The Statistics dinv and bounce. Given D ∈ Dn, Haiman defined the
d-inversions of D by setting

dinv(D) =
∑
i<j

χ(gi(D)− gj(D) ∈ {0, 1}).

Haglund defined a bounce path and bounce statistic for D as follows. A
ball starts at (n, n) and makes a succession of alternating horizontal and
vertical moves H0(D), V0(D),H1(D), V1(D), . . . ,Hs(D), Vs(D) leading west
and south to (0, 0). The moves Hi(D) and Vi(D) will consist of hi(D)
west steps and vi(D) = hi(D) south steps, respectively. After the first
i pairs of moves, the ball has reached the point (ni, ni) on the main di-
agonal, where ni = n −

∑
j<i hj(D). At the next step, the ball moves

west hi(D) units until it is “blocked” by the north step of D ending at
(ni − hi(D), ni). The ball then moves south vi(D) = hi(D) units to return
to the main diagonal. The bouncing stops when the ball reaches (0, 0). The
lattice path traced out by the ball is called the bounce path bpath(D). Note
that

∑
i≥0 vi(D) =

∑
i≥0 hi(D) = n. Call the north steps that block the

ball blocking north steps. Define bounce(D) =
∑

i≥0 ivi(D) =
∑

i≥0 ihi(D),
which is the number of lattice squares in the rows west of the blocking north
steps. See Figure 1 for an example; the cells contributing to bounce(D)
are marked by X’s, and the blocking north steps are cross-hatched. We
have maj(D) = 34, inv(D) = 18, area(D) = 10, dinv(D) = 10, and
bounce(D) = 14.

Figure 1. Bouncing through a Dyck path.

4. Combinatorial q, t-Catalan Numbers. We define the combinatorial q, t-
Catalan numbers by the equivalent formulas

Cn(q, t) =
∑

D∈Dn

qdinv(D)tarea(D) =
∑

D∈Dn

qarea(D)tbounce(D).

The equivalence of these definitions is proved by exhibiting a bijection
φ : Dn → Dn that maps the ordered pair of statistics (dinv, area) to
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(area,bounce). We describe a more general bijection in §2.2, which includes
φ as a special case.

5. Symmetry Properties. We have the univariate symmetry Cn(q, 1) =
Cn(1, q), which says that the statistics area, dinv, and bounce are equidis-
tributed on Dn. In fact, we even have the joint symmetry Cn(q, t) = Cn(t, q),
which follows from Garsia and Haglund’s long proof linking Cn(q, t) to the
nabla operator [5, 6]. The map φ provides a bijective proof of univariate
symmetry; giving a bijective proof of joint symmetry is an open problem.

6. Recursion. For 0 ≤ k ≤ n, let Dn,k consist of all Dyck paths D ∈ Dn

ending with exactly k east steps; D ∈ Dn,k iff h0(D) = k. Set

(2) Cn,k(q, t) =
∑

D∈Dn,k

qarea(D)tbounce(D).

Haglund proved the recursion

(3) Cn,k(q, t) = qk(k−1)/2tn−k
n−k∑
r=0

[
r + k − 1
r, k − 1

]
q

Cn−k,r(q, t) for 1 ≤ k ≤ n

with initial conditions Cn,0(q, t) = χ(n = 0) for all n ≥ 0 [8]. Since Cn(q, t) =
t−nCn+1,1(q, t), this recursion uniquely determines the q, t-Catalan numbers.

7. Fermionic Formula. Haglund also derived an explicit “fermionic” formula
for Cn(q, t) [8]:

(4) Cn(q, t) =
∑

w0+···+ws=n
wi>0

q
∑

i (wi
2 )t

∑
i iwi

s−1∏
i=0

[
wi+1 + wi − 1
wi+1, wi − 1

]
q

.

8. Specialization at t = 1/q. Haglund [8] and Loehr [24] gave algebraic and
bijective proofs (respectively) of the respective formulas

q(
n
2)Cn,k(q, 1/q) =

[k]q
[n]q

[
2n− k − 1
n− k, n− 1

]
q

q(k−1)n;(5)

q(
n+1

2 )−nkCn,k(q, 1/q) =
[

2n− k − 1
n− k, n− 1

]
q

− qk

[
2n− k − 1
n− k − 1, n

]
q

.(6)

It follows that q(
n
2)Cn(q, 1/q) is given by the formulas

(7)
1

[n+ 1]q

[
2n
n, n

]
q

=
[

2n
n, n

]
q

− q

[
2n

n− 1, n+ 1

]
q

=
∑

D∈Dn

qmaj(D).

9. Statistics for Labelled Paths. The area and dinv statistics for Dyck paths
extend naturally to labelled Dyck paths. A labelled Dyck path of order n is a
path D ∈ Dn in which each vertical step is assigned a label between 1 and
n. We require that the labels of vertical steps in the same column strictly
increase from bottom to top. Let Pn denote the set of all such objects
with distinct labels; let Qn denote the set of all such objects where labels
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may be repeated (subject to the increasing-column condition). An object
Q ∈ Qn is uniquely determined by the pair (g(Q), r(Q)), where g(Q) =
(g0(Q), . . . , gn−1(Q)) is the area vector of the path Q (ignoring labels), and
r(Q) = (r0(Q), . . . , rn−1(Q)) is the sequence of labels in Q from bottom to
top. We call r(Q) the label vector of Q. Define cQ(j) to be the number of
j’s in the label vector r(Q). Define area(Q) =

∑n−1
i=0 gi(Q) and

dinv(Q) =
∑
i<j

χ((gi = gj and ri < rj) or (gi = gj + 1 and ri > rj)).

Finally, define generating functions

Hn(q, t) =
∑

P∈Pn

qarea(P )tdinv(P ), Fn(~z; q, t) =
∑

Q∈Qn

qarea(P )tdinv(P )
∏
j≥1

z
cQ(j)
j .

Many combinatorial properties of the q, t-Catalan numbers extend to these
polynomials [13, 14, 21], including: univariate symmetry in q and t, conjec-
tural joint symmetry, definitions via bounce-like statistics, fermionic formu-
las, recursions, and specializations at t = 1/q.

1.2. Algebraic Aspects of the q, t-Catalan Numbers. This section
states the principal theorems and conjectures connecting Haglund’s com-
binatorial q, t-Catalan numbers (and their extensions Hn and Fn) to the
theory of Macdonald polynomials, diagonal harmonics modules, and sym-
metric functions. We first review some standard definitions and results in
symmetric function theory and representation theory; see [25, 26] for more
details.

1. Partitions. We use standard notation for integer partitions, as in [25]. In
particular, if µ ` n and c is a cell in the diagram of µ, we use the notation
µ′, ≤, a(c), a′(c), l(c), l′(c), and n(µ) to denote (respectively) the transpose
of µ, the dominance partial order on partitions, the arm of c, the coarm of
c, the leg of c, the coleg of c, and

∑
c∈µ l(c). Define M = (1 − q)(1 − t),

Bµ =
∑

c∈µ q
a′(c)tl

′(c), Πµ =
∏

c 6=(0,0)(1 − qa′(c)tl
′(c)), Tµ = qn(µ′)tn(µ), and

wµ =
∏

c∈µ[(qa(c) − tl(c)+1)(tl(c) − qa(c)+1)].

2. Symmetric Functions. We will work in the vector space Λn
F consisting of

symmetric functions homogeneous of degree n in the variables z1, . . . , zn with
coefficients in F = Q(q, t). We write mµ, hµ, eµ, pµ, and sµ to denote (re-
spectively) the monomial, homogeneous, elementary, power-sum, and Schur
symmetric functions indexed by µ ` n. These all form bases of Λn

F . The Hall
scalar product is defined by requiring that the Schur basis be orthonormal.
The power-sum basis is orthogonal relative to this scalar product, while the
monomial basis is dual to the homogeneous basis.

3. Macdonald Polynomials and Nabla. The modified Macdonald polynomi-
als [12, 15, 16, 25] form another basis for Λn

F . Using plethystic notation,
these polynomials can be defined as the unique elements H̃µ ∈ Λn

F such that
H̃µ[X(1 − q)] ∈

∑
λ≥µ Fsλ; H̃µ[X(1 − t)] ∈

∑
λ≥µ′ Fsλ; and 〈H̃µ, sn〉 = 1.
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For an explicit combinatorial description of H̃µ, consult [10, 12]. Theorem
2.4 in [7] gives the following expansion of en in terms of modified Macdonald
polynomials: en =

∑
µ`n(MBµΠµ/wµ)H̃µ.

The nabla operator, introduced by F. Bergeron and Garsia [1, 2, 3], is the
unique F -linear map on Λn

F defined on the basis {H̃µ} by ∇(H̃µ) = TµH̃µ.
It follows that ∇(en) =

∑
µ`n(MTµBµΠµ/wµ)H̃µ.

4. Diagonal Harmonics. For n ≥ 1, the symmetric group Sn acts diago-
nally on the polynomial ring Rn = Q[x1, . . . , xn, y1, . . . , yn], which is doubly
graded by total degree in the x-variables and in the y-variables. The diagonal
harmonics module DHn consists of all f ∈ Rn such that

∑n
i=1 ∂x

h
i ∂y

k
i f = 0

for all h, k with h+ k ≥ 1. The diagonal harmonic alternants DHAn is the
submodule of DHn consisting of all f such that πf = sgn(π)f for π ∈ Sn.
We write Hilb(DHn) and Hilb(DHAn) for the Hilbert series of these doubly-
graded Sn-modules, which are elements of N[q, t]. Write Frob(DHn) for the
Frobenius series of DHn; note that Frob(DHn) ∈ Λn

F .

5. Master Theorem for the q, t-Catalan Numbers: For n ≥ 1, the following
five elements of Q(q, t) are all equal (and are, therefore, elements of N[q, t]):

(a)
∑

D∈Dn
qarea(D)tbounce(D) (Haglund’s combinatorial formula [8])

(b)
∑

D∈Dn
qdinv(D)tarea(D) (Haiman’s combinatorial formula)

(c) 〈∇(en), s1n〉 (nabla formula)
(d)

∑
µ`n T

2
µMBµΠµ/wµ (Garsia-Haiman rational-function formula [7])

(e) Hilb(DHAn) (representation-theoretical formula)
See [5, 6, 7, 17, 18] for the proof.

6. Hilbert Series Conjecture [14]: For n ≥ 1, the following six elements of
Q(q, t) are all equal (and are, therefore, elements of N[q, t]):

(a)
∑

P∈Pn
qdinv(P )tarea(P ) (first combinatorial formula)

(b)
∑

P∈Pn
qarea(P )tpmaj(P ) (second combinatorial formula [21])

(c) 〈∇(en), h1n〉 (nabla formula)
(d)

∑
µ`n〈H̃µ, h1n〉TµMBµΠµ/wµ (Macdonald polynomial formula)

(e)
∑

µ`n+1MΠµB
n+1
µ /wµ (rational-function formula)

(f) Hilb(DHn) (representation-theoretical formula)
It is known that (a)=(b) [21, 23] and that (c)=(d)=(e)=(f) [9, 17, 18].

7. Frobenius Series Conjecture [13]: For n ≥ 1, the following five elements
of Λn

F are all equal (and are, therefore, Schur-positive):

(a)
∑

Q∈Qn
qdinv(Q)tarea(Q)z

cQ(1)
1 · · · zcQ(n)

n (combinatorial formula)
(b) ∇(en) (nabla formula)
(c)

∑
µ`n H̃µTµMBµΠµ/wµ (Macdonald polynomial formula)

(d)
∑

λ`n sλ

(∑
µ`n+1MΠµBµsλ′ [Bµ]/wµ

)
(Schur expansion)

(e) Frob(DHn) (representation-theoretical formula)
We know (b)=(c)=(d)=(e) [9, 17, 18], and (a) is symmetric in the zi’s [13].
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2. Combinatorics of Square q, t-Lattice Paths

2.1. Statistics for Square Paths. A square lattice path of order n is a
lattice path in an n × n square. Let SQn denote the set of square lattice
paths of order n. We now define three statistics on paths in SQn generalizing
the area, dinv, and bounce statistics defined in §1.1.

1. Square area Statistic. For S ∈ SQn, let ` = `(S) be the minimum
possible value such that S stays weakly above the line y = x− `. We call `
the deviation of the path S. Since S begins at the origin and ends at (n, n),
we see that 0 ≤ ` ≤ n. Define the area vector g(S) = (g0(S), . . . , gn−1(S))
by requiring that gi(S) + n− i be the number of complete boxes in the i’th
row from the bottom between S and the line x = n. Note that the entries
of this vector can be negative, but that this area vector reduces to the area
vector in §1.1 when S is a Dyck path. We define area(S) =

∑n−1
i=0 (`+gi(S)).

This can be interpreted as the number of complete boxes to the right of S
and to the left of the line y = x− `.

2. Square dinv Statistic. Suppose S ∈ SQn has (g0(S), . . . , gn−1(S)) as its
area vector. Define

dinv(S) =
∑
i<j

χ(gi(S)− gj(S) ∈ {0, 1}) +
∑

i

χ(gi(S) < −1).

If S is a Dyck path, then the condition gi(S) < −1 never holds, and this
formula for dinv(S) reduces to the formula given in §1.1.

3. Square bounce Statistic. Let S ∈ SQn have deviation `. The break point
of S, (`x(S), `y(S)), is the leftmost point along the path S lying on the line
y = x− `.

We now proceed to define a bounce path bpath(S) in analogy with the
bounce paths defined for Dyck paths. The bounce path for S consists of two
pieces: a positive part located northeast of the break point, and a negative
part located southwest of the break point. First consider the positive part.
A ball starts at (n, n) and makes an initial vertical move V−1 of length
v−1 = ` ending at (n, n−`). The ball then makes alternating horizontal and
vertical moves H0, V0,H1, V1, . . . ,Hs, Vs until it reaches the break point. We
let hi and vi denote the length of the moves Hi and Vi, respectively. We
determine hi and vi for each i ≥ 0 as follows. First, the ball moves west hi

units until it is blocked by the north step of S ending at the horizontal level
occupied by the ball. Second, the ball moves south vi = hi units to return
to the line y = x − `. As before, the steps that block the ball’s westward
motion are called blocking north steps.

The negative part of the bounce path traces the motion of a second bounc-
ing ball that starts at the origin and moves northeast towards the break
point. This ball makes an initial horizontal move H−1 of length h−1 = `
from (0, 0) to (`, 0). It then makes alternating vertical and horizontal moves
V−2,H−2, V−3,H−3, . . . , Vu,Hu until it reaches the break point. For each
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i < −1, the ball moves north vi units until it is blocked by the east step of S
ending at the vertical line occupied by the ball. (Note that this is not just
a reflected version of the bounce algorithm in the positive part.) The ball
then moves east hi = vi units to return to the line y = x− `. The east steps
that block the ball’s northward motion are called blocking east steps.

Finally, we define the bounce statistic for any path S ∈ SQn. Let
Vu, . . . , Vs be the nonzero vertical moves in bpath(S), where u ≤ 0 ≤ s.
Set bounce(S) =

∑s
i=u(i− u)vi. Also set bmin(S) = u and bmax(S) = s.

For a Dyck path D, the deviation ` is 0, the break point is (0, 0), the
positive part of the bounce path coincides with the bounce path described
in §1.1, and the negative part of the bounce path is empty. In this case, we
set bmin(D) = 0 (ignoring the empty moves V−1 and H−1), and the bounce
statistic just defined reduces to the formula used in §1.1.

For example, Figure 2 illustrates a path S ∈ SQ15 and its bounce path.
For this path, `(S) = 3, the break point is (8, 5),

g(S) = (0,−1,−2,−1,−1,−3,−2,−2,−2,−3,−2,−1,−1, 0, 1),

area(S) = 25, dinv(S) = 52, bmin(S) = −4, bmax(S) = 2, (v−4, . . . , v2) =
(h−4, . . . , h2) = (1, 2, 2, 3, 3, 2, 2), and bounce(S) = 49.

Figure 2. A path S in SQ15 (solid path) along with
bpath(S) (dotted path).

2.2. Comparison of the Statistics.

Theorem 1. There is a bijection φ : SQn → SQn such that area(φ(S)) =
dinv(S) and bounce(φ(S)) = area(S). The deviation of φ(S) is the number
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of −1’s in g(S); the break point of φ(S) is

(`x(φ(S)), `y(φ(S))) = (|{j : gj(S) < 0}|, |{j : gj(S) < −1}|);
bmin(φ(S)) = minj gj(S); and bmax(φ(S)) = maxj gj(S). Moreover, φ(S)
ends with an east step iff S begins with a north step.

Proof. Fix S ∈ SQn with deviation `. We begin our construction of φ(S)
by specifying its bounce path. Let u be the minimal value appearing in
g(S), and let s be the maximal value appearing in g(S). It is easy to
see that u = −`. For u ≤ i ≤ s, define vi to be the number of gj(S)’s
equal to i, and define hi = vi. These data uniquely determine a bounce
path B(S) according to the rules above. We will construct φ(S) so that
bpath(φ(S)) = B(S), hi(φ(S)) = hi, and vi(φ(S)) = vi.

It suffices to specify how the north and east steps of φ(S) are interleaved
between successive bounces of B(S). The ordering of the steps west of Vi

and north of Hi+1 is determined by the relative order of the entries i and
i + 1 in the area vector for S. However, the details depend on whether we
are considering the positive or negative part of the bounce path.

First, we identify the breakpoint of φ(S) as the point (
∑

j<0 hj ,
∑

j<−1 vj).
The path φ(S) must pass through this point. Also, note that φ(S) runs east
for hu steps just before the breakpoint and north for vs steps just after the
breakpoint.

Second, for each i ≥ 0, we describe the subpath of φ(S) located north of
Hi(φ(S)) and west of Vi−1(φ(S)). Our description starts with the step just
after (northeast of) the blocking north step that terminates the horizontal
bounce Hi. Scan g(S) from right to left, going north in φ(S) when we
encounter a gj(S) equal to i− 1, and going east in φ(S) when we encounter
a gj(S) equal to i. Note that this process generates vi = hi east steps
and vi−1 north steps, so the subpath ends where it should. Moreover, for
i > 0, the last step generated by this scan must be a north step, since
g0(S) ≤ 0 and gj+1(S) ≤ gj(S)+1 imply that the leftmost i in g(S) must be
immediately preceded by an i− 1. This last step is the blocking north step
that terminates the horizontal bounce Hi−1. On the other hand, for i = 0,
the subpath ending at (n, n) may or may not end in a north step, and this
fact does not influence the bounce path. Note that this last subpath ends
in an east step if g0(S) = 0. Conversely, if g0(S) < 0, then the leftmost −1
in g(S) must occur to the left of the leftmost 0, so that the last subpath
ends in a north step. Since g0(S) = 0 iff S begins with a north step, these
comments show that φ(S) ends in an east step iff S begins with a north
step. (If S is a Dyck path, there is no subpath corresponding to i = 0. In
this case, φ(S) is also a Dyck path, and the italicized statement is obviously
true. The restricted map φ|Dn : Dn → Dn coincides with the bijection φ
mentioned in §1.1.) For all paths S, it follows that the positive part of the
bounce path for φ(S) coincides with the positive part of B(S), as desired.

Third, for each i < 0, we describe the subpath of φ(S) located north
of Hi(φ(S)) and west of Vi−1(φ(S)). Our description starts at the step
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just after (northeast of) the blocking east step that terminates the vertical
bounce Vi, or at (0, 0) for i = −1. Scan g(S) from right to left, ignoring
the first occurrence of a gj(S) equal to i. Continuing the scan, we go north
in φ(S) when we encounter a gj(S) equal to i − 1, and we go east in φ(S)
when we encounter a gj(S) equal to i. At the end of the scan, we append
one more east step to φ(S), which is the blocking east step terminating the
vertical bounce Vi−1. As before, this process guarantees that the negative
part of bpath(φ(S)) equals the negative part of B(S).

It is easily checked that φ is invertible. To compute T = φ−1(S′), first
draw bounce(S′). Next, for each i, use the subpaths of S′ between the
blocking steps to recover the substrings of g(T ) consisting of i’s and i− 1’s.
This is done by reversing the two scanning procedures just described for the
positive and negative regions of the bounce path. Finally, these substrings
suffice to determine g(T ) (and hence T ) uniquely, because of the condition
gj+1(T ) ≤ gj(T ) + 1.

Finally, we check that φ has the desired effect on statistics. By construc-
tion, the bounce path of φ(S) is indeed B(S), and the break point does lie
at the coordinates given earlier. The statements in the theorem giving the
deviation of φ(S) and the coordinates of the break point of φ(S) now follow
from the formula vi = hi = |{j : gj(S) = i}|. The same formula shows that

bounce(φ(S)) =
s∑

i=u

(i− u)vi =
s∑

i=u

(i+ `)vi =
n−1∑
j=0

(`+ gj(S)) = area(S).

Next, recall that area(φ(S)) can be interpreted as the number of complete
lattice squares east of φ(S) and west of the line y = x − v−1, where v−1

is the deviation of φ(S). These cells can be partitioned into the following
disjoint sets:

• the set Bi of cells east of Vi and west of y = x− v−1, for all i;
• the set Pi of cells east of φ(S), north of Hi, and west of Vi−1, for all
i ≥ 0;

• the set Ni of cells east of φ(S), north of Hi, and west of Vi−1, for all
i < 0.

Using the definition of φ, the following identities are easily verified:

|Bi| =
(
vi

2

)
=
∑
j<k

χ(gj(S) = gk(S) = i);

|Pi| =
∑
j<k

χ(gj(S) = i, gk(S) = i− 1);

|Ni| =
∑
j<k

χ(gj(S) = i, gk(S) = i− 1) +
∑

k

χ(gk(S) = i− 1).

The last summand in the formula for |Ni| accounts for the area cells above
bounce(φ(S)) in the column below the blocking east step that terminates
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Vi−1. Adding these formulas over all i, we see that dinv(S) = area(φ(S)).
�

Figure 3. Image of the path S under φ.

For example, let S be the path from Figure 2. Figure 3 shows φ(S) along
with its bounce path. Note that g(S) has two −3’s, five −2’s, five −1’s, two
0’s, and one 1, so that

(v−3(φ(S)), . . . , v1(φ(S))) = (2, 5, 5, 2, 1).

Furthermore, area(S) = 25 = bounce(φ(S)) and dinv(S) = 52 = area(φ(S)).

2.3. Symmetry Properties. For all n ≥ 1, define

Sn(q, t) =
∑

S∈SQn

qarea(S)tbounce(S).

Using the bijection φ, it follows that

Sn(q, t) =
∑

S∈SQn

qdinv(S)tarea(S).

Letting q = 1 or t = 1 here, we obtain the following univariate symmetries.

Corollary 2.∑
S∈SQn

qdinv(S) =
∑

S∈SQn

qbounce(S) =
∑

S∈SQn

qarea(S).

Conjecture 3. The joint symmetry Sn(q, t) = Sn(t, q) holds for all n.

This conjecture has been confirmed by computer for 1 ≤ n ≤ 11.
Computing Sn(q, t) for small values of n, one sees that the polynomial

Sn(q, t) is always divisible by 2. Our next goal is to explain this property.
Define SQN

n , SQE
n , NSQn, and ESQn to be the paths in SQn that end with
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a north step, end with an east step, begin with a north step, and begin with
an east step, respectively. Set

SN
n (q, t) =

∑
S∈SQN

n

qarea(S)tbounce(S);

SE
n (q, t) =

∑
S∈SQE

n

qarea(S)tbounce(S);

NSn(q, t) =
∑

S∈NSQn

qdinv(S)tarea(S);

ESn(q, t) =
∑

S∈ESQn

qdinv(S)tarea(S).

We will show that SN
n (q, t) = SE

n (q, t) = Sn(q, t)/2. Since φ sends paths
with initial north steps to paths with terminal east steps and vice versa, it
also follows that NSn(q, t) = ESn(q, t) = Sn(q, t)/2. We call these identities
pair-symmetries.

To prove the pair-symmetries, it suffices to construct a bijection ψ :
SQE

n → SQN
n preserving area and bounce. We begin by introducing a

cyclic shift map cyc : SQn → SQn. Let S ∈ SQn be encoded by the word
w1w2 · · ·w2n ∈ {0, 1}2n. Define cyc(S) to be the path encoded by the word
w2nw1w2 · · ·w2n−1.

Lemma 4. For S ∈ SQn, area(S) = area(cyci(S)) for all integers i.

Proof. It suffices to prove the equality for i = 1. Let S′ = cyc(S), and let the
deviation of S be `. First consider the case where the last step of S is a north
step. Then ` ≥ 1 and the deviation of cyc(S) is `′ = ` − 1. Furthermore,
g0(S′) = 0, gn−1(S) = −1, and gj(S′) = gj−1(S) + 1 for 1 ≤ j < n. So, by
definition,

area(S′) = (`′ + g0(S′)) +
n−1∑
j=1

(`′ + gj(S′))

= (`− 1 + 0) +
n−2∑
j=0

(`− 1 + gj(S) + 1)

=
n−1∑
j=0

(`+ gj(S)) = area(S).

Now suppose S ends in an east step. In this case, `′ = ` + 1, and gj(S′) =
gj(S)−1 for each 0 ≤ j < n. It follows immediately that area(S′) = area(S)
for this case as well. �

Theorem 5. There is a bijection ψ : SQE
n → SQN

n preserving area and
bounce. Consequently,

SN
n (q, t) = SE

n (q, t) = Sn(q, t)/2 = NSn(q, t) = ESn(q, t).
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Proof. Let S ∈ SQE
n . Let A denote the east step at the end of the path S,

and let B denote the blocking north step terminating the initial horizontal
move H0 (of length h0) in the positive part of the bounce path for S. Define
S′ = ψ(S) to be cycv−1(S)+h0(S)(S), and let A′ and B′ denote the steps
corresponding to A and B under this cyclic shift. Since the north step B′ is
the last step of S′, we have S′ ∈ SQN

n . By the lemma, area(S′) = area(S).
Let ` and `′ be the deviations of S and S′, respectively. Note that ` = v−1(S).
Recall that applying cyc to a path in SQE

n increases the deviation by 1, while
applying cyc to a path in SQN

n decreases the deviation by 1. Therefore,
v−1(S′) = `′ = `+h0(S)− v−1(S) = h0(S) = v0(S). Now, the bounce V0(S)
begins at B, while the bounce V−1(S′) begins at B′. Since v−1(S′) = v0(S),
it follows easily that vi(S′) = vi+1(S) for −1 ≤ i < s. See Figure 4 for an
example.

Figure 4. Example of the bijection ψ.

In the negative part of the bounce path for S′, we have h−1(S′) = `′ =
h0(S). It follows that A′ will be the blocking east step that terminates
V−2(S′), and hence v−2(S′) = v−1(S). Tracing the bounce paths upward,
we easily see that vi(S′) = vi+1(S) for u− 1 ≤ i ≤ −2. Therefore,

bounce(S′) =
s−1∑

i=u−1

(i− (u− 1))vi(S′) =
s−1∑

i=u−1

(i+ 1− u)vi+1(S)

=
s∑

i=u

(i− u)vi(S) = bounce(S).

Finally, ψ is a bijection: to invert it, we just cyclically shift S′ backwards
so that the first blocking east step A′ becomes the final east step of the
path. �

We close this section with an alternate formula for ESn(q, t) = Sn(q, t)/2.
Define dinv0(S) =

∑
i<j χ(gi(S)− gj(S) ∈ {0, 1}) +

∑
i χ(gi(S) < 0).
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Theorem 6. For all n ≥ 1,

ESn(q, t) =
∑

S∈ESQn

qdinv(S)tarea(S) =
∑

U∈SQE
n

qdinv0(U)tarea(U).

Proof. The map cyc−1 is a bijection ESQn → SQE
n that preserves area.

Letting U = cyc−1(S), we see that area(U) = area(S) and gi(U) = gi(S)+1
for all i. This implies that gi(U)− gj(U) = gi(S)− gj(S) for all i < j, while
gi(U) < 0 iff gi(S) < −1. Hence, dinv0(U) = dinv(S), and the theorem
follows. �

2.4. Recursion for Square Paths. In §1.1, we saw that the generating
functions Cn,k(q, t) for Dyck paths of order n with h0 = k satisfied the
recursion (3). Now we prove a similar recursion for square q, t-lattice paths.
The idea is to remove the “earliest” bounce in a square q, t-lattice path,
namely the negative bounce arriving at the break point.

Formally, for n > 0 and 1 ≤ k ≤ n, we set

Rn,k(q, t) =
∑

S∈SQn

qarea(S)tbounce(S)χ(hbmin(S) = k, `(S) > 0).

The condition `(S) > 0 means that S is not a Dyck path, while hbmin(S) = k
means that the last horizontal move in the negative part of the bounce path
(arriving at the break point) has length k. To take care of the Dyck paths
in SQn, we define Rn,0(q, t) = Cn(q, t) = t−nCn+1,1(q, t) for n ≥ 0. For
k = n ≥ 0, we have Rn,n(q, t) = q(

n
2) since the only path that contributes is

the one that goes east n steps and then north n steps. Clearly, Sn(q, t) =∑n
k=0Rn,k(q, t).

Theorem 7. For 0 < k < n,

(8) Rn,k(q, t) = q(
k
2)tn−k

n−k∑
r=1

[
r + k

r, k

]
q

Cn−k,r(q, t)

+ q(
k
2)tn−k

n−k∑
r=1

qk

[
r + k − 1
r − 1, k

]
q

Rn−k,r(q, t).

Proof. Any path S contributing to Rn,k either has its break point on the
bottom row (i.e., `y = 0), or has the break point above the bottom row (i.e.,
`y > 0). These two cases will correspond to the two summations on the
right side of (8).

First consider the case where the break point is on the bottom row.
This implies that S is encoded by 1kwk+1 · · ·w2n. Letting r = h0(S),
so that 1 ≤ r ≤ n − k, it follows from our description of bouncing for
square lattice paths that the northeast end of bpath(S) is encoded by 01r0k,
regardless of what S does in its last r + k steps. Hence, the path D
encoded by wk+1wk+2 · · ·w2n−r−k1r is a Dyck path of order n − k with
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h0(D) = r = h0(S). This accounts for the factor Cn−k,r(q, t). The fac-
tor

[
r+k
r,k

]
q

corresponds to choosing the subpath S′ consisting of the final

r + k steps of S. The power of q in this factor records ar(S′), which is the
number of area squares between S′ and bpath(S). We have now obtained
the summand in the first summation of (8). The total power of q is cor-
rect, thanks to the identity area(S) =

(
k
2

)
+ area(D) + ar(S′). Moreover,

we have bmin(S) = −1, bmin(D) = 0, v−1(S) = k, and vi(D) = vi(S) for
0 ≤ i ≤ bmax(S) = bmax(D). Therefore,

bounce(S) =
bmax(S)∑

i=0

(i+ 1)vi(S) =
bmax(D)∑

i=0

ivi(D) +
∑
i≥0

vi(S)

= bounce(D) + n− k,

so the power of t is correct as well. Note that every triple (r, S′, D) counted
by the first summation arises from a unique path S in the manner described.

Now consider the case where the break point does not lie on the bottom
row. We then have u = bmin(S) ≤ −2, vu(S) = hu(S) = k, and vu+1(S) =
hu+1(S) = r for some r > 0. Let S′ be the subpath of S starting just
after the blocking east step that terminates Vu+1 and ending just before the
blocking east step that terminates Vu. Note that S′ is an arbitrary lattice
path consisting of r − 1 east steps and k north steps. This accounts for the
term

[
r+k−1
r−1,k

]
q

in the second summation.

Next, let S0 be obtained from S by deleting S′ and the k + 1 east steps
following S′, and replacing them by r east steps. (Intuitively, we are excising
the k rows of the figure immediately below the break point, and then sliding
the break point k units down and k units left along the line y = x− `(S).)
One checks easily that S0 is one of the paths enumerated by Rn−k,r(q, t),
that bmin(S0) = u + 1, and that hi(S0) = vi(S0) = vi(S) = hi(S) for
bmin(S0) ≤ i ≤ bmax(S0) = bmax(S). As above, it easily follows that
bounce(S) = bounce(S0) + n − k. Moreover, since ar(S′) is the number of
area squares below S′ and above bpath(S), we see that area(S) = area(S0)+
ar(S′)+

(
k
2

)
+k. Here, the k added at the end accounts for the extra area cells

below the blocking east step immediately following S′. Since the passage
from S and k to the triple (r, S′, S0) is reversible, the proof of the recursion
is complete. �

Note that recursions (3) and (8), and the initial conditions, uniquely de-
termine the quantities Rn,k(q, t) and Sn(q, t) and provide an efficient method
for computing them.

2.5. Fermionic Formula. We now obtain a fermionic formula for Sn(q, t)
in analogy with (4).



16 NICHOLAS A. LOEHR AND GREGORY S. WARRINGTON

Theorem 8. For n ≥ 1,

(9) Sn(q, t) = 2q(
n
2) +

∑
w0+···+ws=n

wi>0;s≥1

qp1tp2

s−1∏
j=0

[
wj + wj+1 − 1
wj − 1, wj+1

]
q

+

s−1∑
a=0

qp3tp2

[
wa + wa+1

wa, wa+1

]
q

a−1∏
j=0

[
wj + wj+1 − 1
wj , wj+1 − 1

]
q

s−1∏
j=a+1

[
wj + wj+1 − 1
wj − 1, wj+1

]
q


where p1 =

∑s
j=0

(wj

2

)
, p2 =

∑s
j=0 jwj, and p3 = p1 +

∑
0≤j<awj.

Proof. One can deduce this formula by simply examining the picture of a
path S counted by Rn,k and its bounce path bpath(S). The paths S0 and
S1 encoded by 0n1n and 1n0n account for the initial term 2q(

n
2) in (9).

Of the two primary summands in (9), the first gives the contributions of
all Dyck paths other than S0, as can be checked by comparing with (4).
Here, wi = vi(D) for 0 ≤ i ≤ s = bmax(D), and the q-binomial coefficients
account for the subpaths of D above bpath(D), keeping in mind the blocking
north steps.

The second summand accounts for all non-Dyck paths S in SQn other
than S1. To translate a particular term in this summand into a path S,
take bmin(S) = −(a+ 1), bmax(S) = bmin(S) + s, and vi(S) = wi−bmin(S)

for bmin(S) ≤ i ≤ bmax(S). In particular, v0(S) = wa+1 and h−1(S) =
wa. One checks that p3 counts the area squares between bpath(S) and
y = x − `(S), plus the extra area squares above bpath(S) in the columns
below the blocking east steps. It is also clear that p2 = bounce(S). The
first q-binomial coefficient on the second line of (9) accounts for the subpath
of S above the zeroth horizontal bounce move, which is an arbitrary lattice
path with wa+1 east steps and wa north steps. The product of q-binomial
coefficients for 0 ≤ j < a accounts for the subpaths of S above the bounces
in the negative part of the bounce path, keeping in mind the blocking east
steps. The product of q-binomial coefficients for a < j < s accounts for the
subpaths of S above the bounces in the positive part of the bounce path,
keeping in mind the blocking north steps. �

For 0 < k < n, there is a similar fermionic formula for Rn,k(q, t). We
simply use the second line of (9), summing over all (w0, . . . , ws) and all a
such that w0 + · · ·+ws = n, wi > 0, s ≥ 1, 0 ≤ a ≤ s−1, and fixing w0 = k.

2.6. Specialization at t = 1/q. Our next goal is to derive explicit formu-
las for Rn,k(q, 1/q) and Sn(q, 1/q) similar to the formulas for Cn,k(q, 1/q)
and Cn(q, 1/q) from §1.1. We shall need the following standard identities:

(10)
[
c+ d

c, d

]
q

= qd

[
c+ d− 1
c− 1, d

]
q

+
[
c+ d− 1
c, d− 1

]
q

;
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(11)
[
c+ d

c, d

]
q

=
[
c+ d− 1
c− 1, d

]
q

+ qc

[
c+ d− 1
c, d− 1

]
q

;

(12)
[
c+ d+ e+ 1
c, d+ 1 + e

]
q

=
c∑

u=0

[
u+ d

u, d

]
q

[
c+ e− u

c− u, e

]
q

qu(e+1);

(13)
[
c+ d

c, d

]
q

=
d∑

v=0

qcv

[
c+ d− v − 1
c− 1, d− v

]
q

.

As in [24], the reader may give computation-free bijective proofs of these
identities by drawing suitable pictures and using (1). For instance, (13)
classifies paths in a d × c rectangle based on the number v of east steps
following the final north step.

Theorem 9. For 1 ≤ k ≤ n,

(14) q(
n−k+1

2 )−(k
2)Rn,k(q, 1/q) =

[
2n− k − 1
n− 1, n− k

]
q

+ qk

[
2n− k − 1
n, n− k − 1

]
q

.

For k = 0, q(
n
2)Rn,0(q, 1/q) = q(

n
2)Cn(q, 1/q) is given by the formulas[

2n
n, n

]
q

− q

[
2n

n− 1, n+ 1

]
q

=
1

[n+ 1]q

[
2n
n, n

]
q

.

Proof. Recall from §1.1 that

q(
u+1

2 )−uvCu,v(q, 1/q) =
[

2u− v − 1
u− v, u− 1

]
q

− qv

[
2u− v − 1
u− v − 1, u

]
q

.(15)

This identity can be proved from (3) by manipulations similar to those
given in this proof; see [19, 24] for details. The formulas for Cn(q, 1/q) =
Rn,0(q, 1/q) now follow easily from the fact that Cn(q, t) = t−nCn+1,1(q, t).

Now we prove (14) by induction on n, the cases n ≤ 1 and n = k being
easy. Using the induction hypothesis and (15) on the right side of (8), we
see that q(

n−k+1
2 )−(k

2)Rn,k(q, 1/q) equals

(16) qp1

n−k∑
r=1

{[
r + k

r, k

]
q

qp2 (α− qrβ) +qk

[
r + k − 1
r − 1, k

]
q

qp3 (α+ qrβ)

}
,

where α =
[ 2(n−k)−r−1
n−k−r,n−k−1

]
q
, β =

[ 2(n−k)−r−1
n−k−r−1,n−k

]
q
, p1 =

(
n−k+1

2

)
− (n − k),

p2 = (n− k)r −
(
n−k+1

2

)
, and p3 =

(
r
2

)
−
(
n−k−r+1

2

)
.

To continue simplifying (16), we proceed in seven steps. Step 1: we
simplify the powers of q. One easily calculates that p1 + p2 = (n− k)(r− 1)
and p1+p3+k = n(r−1)−k(r−2). Step 2: we break (16) into several smaller
sums. To do this, use (10) to rewrite

[
r+k
r,k

]
q

as qk
[
r+k−1
r−1,k

]
q

+
[
r+k−1
r,k−1

]
q

and
then expand the contents of the curly braces in (16) using the distributive
law. What results is a sum of six terms. Two of these terms are equal, and
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two others cancel. After cancelling and grouping, we can rewrite (16) as a
sum A+B + C, where:

A = 2qk
n−k∑
r=1

q(n−k)(r−1)

[
r + k − 1
r − 1, k

]
q

[
2n− 2k − r − 1

n− k − r, n− k − 1

]
q

;(17)

B = qk−n
n−k∑
r=1

q(n−k)r

[
r + k − 1
r, k − 1

]
q

[
2n− 2k − r − 1

n− k − r, n− k − 1

]
q

;(18)

C = −qk−n
n−k∑
r=1

q(n−k+1)r

[
r + k − 1
r, k − 1

]
q

[
2n− 2k − r − 1

n− k − r − 1, n− k

]
q

.(19)

Step 3: we evaluate A. Using (12) with c = n− k− 1, d = k, e = n− k− 1,
and u = r − 1, we find that

A = 2qk

[
2n− k − 1
n− k − 1, n

]
q

.

Step 4: we evaluate B. We use (12) with c = n−k, d = k−1, e = n−k−1,
and u = r. Since the u = 0 summand is missing in B, we must add and
subtract it. We find that

B = qk−n

([
2n− k − 1
n− k, n− 1

]
q

−
[

2n− 2k − 1
n− k, n− k − 1

]
q

)
.

Step 5: we evaluate C. We use (12) with c = n−k−1, d = k−1, e = n−k,
and u = r. Since the u = 0 summand is missing in C, we must add and
subtract it. Also note that the r = n− k term is 0. We find that

C = −qk−n

([
2n− k − 1
n− k − 1, n

]
q

−
[

2n− 2k − 1
n− k − 1, n− k

]
q

)
.

Step 6: we compute B+C. The second terms in the preceding formulas for
B and C cancel; using (10) and (11), we find that

B + C = qk−n

([
2n− k − 1
n− k, n− 1

]
q

−
[

2n− k − 1
n− k − 1, n

]
q

)

=
[

2n− k − 1
n− k, n− 1

]
q

− qk

[
2n− k − 1
n− k − 1, n

]
q

.

Step 7: We combine steps 3 and 6 to obtain

q(
n−k+1

2 )−(k
2)Rn,k(q, 1/q) = A+B+C =

[
2n− k − 1
n− k, n− 1

]
q

+qk

[
2n− k − 1
n− k − 1, n

]
q

,

completing the induction. �

Theorem 10. For all n ≥ 1,

q(
n
2)Sn(q, 1/q) = 2

[
2n− 1
n, n− 1

]
q

=
2

1 + qn

[
2n
n, n

]
q

.
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Proof. Recall that Sn(q, 1/q) =
∑n

k=0Rn,k(q, 1/q). Using the formulas in
the previous theorem for Rn,k(q, 1/q), and writing p1 =

(
n
2

)
+
(
k
2

)
−
(
n−k+1

2

)
,

p2 =
(
n−k+1

2

)
−
(
k
2

)
, we get

q(
n
2)Sn(q, 1/q) = q(

n
2)Rn,0(q, 1/q) +

n∑
k=1

qp1 [qp2Rn,k(q, 1/q)](20)

= q−n

{[
2n
n, n

]
q

−
[

2n
n− 1, n+ 1

]
q

+D + E

}
, where(21)

D =
n∑

k=1

qnk

[
2n− k − 1
n− 1, n− k

]
q

,(22)

E =
n∑

k=1

q(n+1)k

[
2n− k − 1
n, n− k − 1

]
q

.(23)

We evaluate D by using (13) with c = d = n and v = k (adding and
subtracting the missing v = 0 summand), which gives

D =
[

2n
n, n

]
q

−
[

2n
n− 1, n

]
q

.

We evaluate E by using (13) with c = n + 1, d = n − 1 and v = k (adding
and subtracting the missing v = 0 summand), which gives

E =
[

2n
n+ 1, n− 1

]
q

−
[

2n
n, n− 1

]
q

.

Inserting these expressions into (21) and simplifying, we get

q(
n
2)Sn(q, 1/q) = 2q−n

([
2n
n, n

]
q

−
[

2n− 1
n, n− 1

]
q

)
.

Finally, since
[

2n
n,n

]
q

= qn
[

2n−1
n−1,n

]
q
+
[

2n−1
n,n−1

]
q

by (10), we see that

q(
n
2)Sn(q, 1/q) = 2

[
2n− 1
n− 1, n

]
q

.

The identity 2
[

2n−1
n,n−1

]
q

= 2
[

2n
n,n

]
q
/(1 + qn) follows from a simple algebraic

manipulation. �

We remark that the methods in [24] can be used to mechanically trans-
late the preceding algebraic manipulations into bijective proofs of the same
results. However, because of all the subtractions involved, the bijections will
be extremely complicated.

3. Algebraic Conjectures for Square Paths

We now give some conjectures connecting square q, t-lattice paths to Mac-
donald polynomials and the nabla operator.
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3.1. Unlabelled Paths. Master Conjecture for Square q, t-Lattice Paths:
For all n ≥ 1, the following elements of Q(q, t) are all equal (and are, there-
fore, elements of N[q, t]):

(a)
∑

S∈SQN
n
qarea(S)tbounce(S)

(b)
∑

S∈SQE
n
qarea(S)tbounce(S)

(c)
∑

S∈NSQn
qdinv(S)tarea(S)

(d)
∑

S∈ESQn
qdinv(S)tarea(S)

(e)
∑

S∈SQE
n
qdinv0(S)tarea(S)

(f) (−1)n−1〈∇(pn), s1n〉
(g)

∑
µ`n(1− tn)(1− qn)ΠµT

2
µ/wµ =

∑
µ`nMB(nn)ΠµT

2
µ/wµ

We have already seen that (a) through (e) are equal, using the bijections
ψ, φ, and cyc−1. To see that (f) equals (g), we use the expansion pn =∑

µ`n((−1)n−1(1 − tn)(1 − qn)Πµ/wµ)H̃µ, which follows immediately from
Corollary 2.4 in [7] and the definition of plethysm. Applying ∇ gives

(−1)n−1∇(pn) =
∑
µ`n

((1− tn)(1− qn)ΠµTµ/wµ)H̃µ.

Taking the scalar product with s1n turns H̃µ into another factor Tµ. Hence,
(f) equals (g). The main conjecture ((a)=(f)) has been tested for 1 ≤ n ≤ 8.

3.2. Labelled Paths. Fix n and N with n ≤ N ≤ ∞. Let SQFn denote
the set of all pairs (S, r), where: S is a path in SQE

n (so that S ends with an
east step); and r = r0 . . . rn−1 is a label vector with ri ∈ {1, 2, . . . , N} such
that gi+1(S) = gi(S) + 1 implies ri < ri+1. If we attach the labels ri to the
vertical steps of S as we did for Dyck paths, then the last condition means
that labels in each column must strictly increase from bottom to top. Let
SQHn denote the subset of SQFn such that r0 . . . rn−1 is a permutation of
{1, 2, . . . , n}. Given (S, r) ∈ SQFn, define area(S, r) = area(S) and

dinv0(S, r) =
∑
i<j

χ ((gi(S)− gj(S) = 0 and ri < rj) or

(gi(S)− gj(S) = 1 and ri > rj)) +
n−1∑
i=0

χ(gi(S) < 0).

(It is equivalent to use all labelled paths beginning with an east step, replac-
ing χ(gi(S) < 0) by χ(gi(S) < −1) in the definition of dinv0.)

Hilbert series conjecture for square q, t-lattice paths: For all n ≥ 1,

(−1)n−1〈∇(pn), h1n〉 =
∑

(S,r)∈SQHn

qarea(S,r)tdinv0(S,r).
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Frobenius series conjecture for square q, t-lattice paths: For all n ≥ 1,

(−1)n−1∇(pn[z1, . . . , zN ]) =
∑

(S,r)∈SQFn

qarea(S,r)tdinv0(S,r)
n−1∏
i=0

zri .

We remark that the same arguments used in [13] show that the Frobe-
nius series conjecture implies the Hilbert series conjecture and the mas-
ter conjecture for unlabelled square paths, along with shuffle-type formu-
las for any scalar product of the form 〈∇(pn), hµeη〉. It is an open prob-
lem to find a naturally occurring doubly-graded Sn-module Mn that has
(−1)n−1∇(pn) as its Frobenius series. Since elements of SQHn encode func-
tions f : {1, 2, . . . , n} → {1, 2, . . . , n} in the obvious way (f−1({i}) is the set
of labels in column i), we should have dim(Mn) = |SQHn| = nn.

3.3. More Nabla Conjectures. So far, we have seen combinatorial for-
mulas that are conjectured to give the monomial expansions of ∇(en) and
(−1)n−1∇(pn). Since en = m(1n) and pn = m(n), these results suggest that
∇(mµ) may have a nice monomial expansion for any µ ` n. In fact, an even
stronger statement appears to be true.

Conjecture 11. For all n ≥ 1 and µ, ν ` n,

(−1)n−`(µ)〈∇(mµ), sν〉 ∈ N[q, t].

The conjecture has been tested for 1 ≤ n ≤ 8. If the conjecture is true,
it readily follows that ∇(mµ)|mν ∈ N[q, t] for all µ and ν. In [3], Bergeron,
Garsia, Haiman, and Tesler made the analogous conjecture

ι(µ′)〈∇(sµ), sν〉 ∈ N[q, t],

where ι(µ) =
(
`(µ)
2

)
+
∑

i:µi<(i−1)(i− 1−µi). This second conjecture implies
that ∇(sµ)|mν ∈ N[q, t] for all µ and ν. Because of the signs, it is not clear
whether either conjecture easily implies the other one.
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