The Sweep Map

Drew Armstrong — University of Miami Nick Loehr — Virginia Tech & US Naval Academy Greg Warrington — University of Vermont

CMS Winter Meeting — Ottawa December 7, 2013

Nutthis.talkshell

An injective sorting map

Area is the only statistic

A typical sort

NENNEE

Assign a weight to each letter:

$$\operatorname{wt}(N) = +1, \quad \operatorname{wt}(E) = -1.$$

Sort in decreasing order of weight.

A typical sort

NENNEE ----- NNNEEE

Assign a weight to each letter:

$$\operatorname{wt}(N)=+1, \quad \operatorname{wt}(E)=-1.$$

Sort in decreasing order of weight.

Define a Dyck path of order n to be a NE-lattice path from (0,0) to (n,n) that stays weakly above y = x.

Let
$$w = w_1 \cdots w_n \in \mathcal{D}_n$$
.

Define levels

$$\ell_i = \ell_i(w) = egin{cases} 0, & i=0, \ rac{\ell_i-1}+\operatorname{wt}(w_i), & i>0. \end{cases}$$

Order-3 Dyck paths

Order-3 Dyck paths

Theorem[L '03]: The map defined is a bijection on Dyck paths of order n.

All is not lost

A proper sorting order for levels:

$$-1, -2, -3, \ldots, 2, 1, 0.$$

All 2×2 paths

Rational variations

Rational variations

The sweep map \mathbf{sw}_{wt}

An alphabet $A=\{x_1,\ldots,x_k\},$ A weight function $\operatorname{wt}:A o\mathbb{Z},$ A word $w=w_1w_2\cdots w_n\in A^*$ and levels

$$\ell_i = \ell_i(w) = egin{cases} 0, & i = 0, \ rac{\ell_{i-1}}{+} \mathrm{wt}(w_i), & i > 0. \end{cases}$$

Rectangular and Dyck domains

Define $\mathcal{R}(x_1^{n_1}\cdots x_k^{n_k})$ to be the set of words $w \in A^*$ consisting of n_j copies of j. Define $\mathcal{D}_{\mathrm{wt}}(x_1^{n_1}\cdots x_k^{n_k})$ to be the set of such words for which all levels ℓ_i are nonnegative.

The Sweep Conjecture

- Conjecture: For any nonnegative integers n_1, \ldots, n_k and any weight-function wt,
 - $\operatorname{sw}_{\operatorname{wt}}$ maps $\mathcal{R}(x_1^{n_1}\cdots x_k^{n_k})$ bijectively to itself, and
 - $\operatorname{sw}_{\operatorname{wt}}$ maps $\mathcal{D}_{\operatorname{wt}}(x_1^{n_1}\cdots x_k^{n_k})$ bijectively to itself.

Examples of \mathbf{sw}_{wt}

Context	ontext Citation		weight	
		N	${m E}$	D
Identity map		-1	-1	
Reversal map		+1	+1	
Dyck paths	L '03	+1	-1	
Schröder paths	EHKK '03	+1	-1	0
Trapezoidal paths	L '03	+1	-m	
Square paths	LW '07	+1	-1	
Jacobians	GM '13	+r	-s	
(a,b)-cores	AHJ '13	+b	-a	

Catalan numbers

So $\sum_{w \in \mathcal{D}_3} 1 = 5 = \frac{1}{4} {6 \choose 3}$.

q-Catalan numbers

So $\sum_{w\in\mathcal{D}_3}q^{\operatorname{area}(w)}=q^3+q^2+2q+1.$

q, *t*-Catalan (circa 1996)

Given (G-H): Rational functions $OC_n(q, t)$

satisfying
$$OC_n(q,t)=OC_n(t,q),$$

 $OC_n(1,1)=C_n,$
 $OC_n(1,q)=OC_n(q,1)=\sum_{w\in \mathcal{D}_n}q^{ ext{area}(w)}.$

Wanted:
$$OC_n(q,t) = \sum_{w \in \mathcal{D}_n} q^{\operatorname{area}(w)} t^{\operatorname{tstat}(w)}.$$

Statistics

Haglund

Haiman

Theorem (G-H):

$$OC_n(q,t) = \sum_{w \in \mathcal{D}_n} q^{\operatorname{area}(w)} t^{\operatorname{\mathsf{bounce}}(w)}.$$

Symmetry of the q, t-Catalan

Prove combinatorially that

$$\sum_{w\in\mathcal{D}_n}q^{\operatorname{area}(w)}t^{\operatorname{dinv}(w)}=\sum_{w\in\mathcal{D}_n}q^{\operatorname{dinv}(w)}t^{\operatorname{area}(w)},$$

Or, equivalently, that

$$\sum_{w\in \mathcal{D}_n} q^{\operatorname{area}(w)} t^{\operatorname{\mathsf{bounce}}(w)} = \sum_{w\in \mathcal{D}_n} q^{\operatorname{\mathsf{bounce}}(w)} t^{\operatorname{area}(w)}.$$

Sweeping up statistics

Symmetry of the q, t-Catalan

Prove combinatorially that

$$\sum_{w\in \mathcal{D}_n} q^{\operatorname{area}(w)} t^{\operatorname{area}(\mathrm{sw}(w))} = \sum_{w\in \mathcal{D}_n} q^{\operatorname{area}(\mathrm{sw}(w))} t^{\operatorname{area}(w)},$$

Or, equivalently, that

$$\sum_{w\in \mathcal{D}_n} q^{\operatorname{area}(w)} t^{\operatorname{area}(\operatorname{sw}^{-1}(w))} = \sum_{w\in \mathcal{D}_n} q^{\operatorname{area}(\operatorname{sw}^{-1}(w))} t^{\operatorname{area}(w)}.$$

Slope-(-s/r) q, t-Catalan

For $r, s \in \mathbb{Z}$ and $a, b \geq 0$, define

$$C_{r,s,a,b}(q,t) = \sum_{w \in \mathcal{D}_{r,s}(N^a E^b)} q^{\operatorname{area}(w)} t^{\operatorname{area}(\operatorname{sw}_{r,s}(w))}.$$

Conjecture: $C_{r,s,a,b}(q,t) = C_{r,s,a,b}(t,q)$.

Example: a = b = 3, r = 2, s = -1

